Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material could boost data storage, save energy

21.10.2009
North Carolina State University engineers have created a new material that would allow a fingernail-size computer chip to store the equivalent of 20 high-definition DVDs or 250 million pages of text, far exceeding the storage capacities of today’s computer memory systems.

Led by Dr. Jagdish “Jay” Narayan, John C.C. Fan Family Distinguished Professor of Materials Science and Engineering and director of the National Science Foundation Center for Advanced Materials and Smart Structures at NC State, the engineers made their breakthrough using the process of selective doping, in which an impurity is added to a material that changes its properties.

The process also shows promise for boosting vehicles’ fuel economy and reducing heat produced by semiconductors, a potentially important development for more efficient energy production.

Working at the nanometer level — a pinhead has a diameter of 1 million nanometers — the engineers added metal nickel to magnesium oxide, a ceramic. The resulting material contained clusters of nickel atoms no bigger than 10 square nanometers, a 90 percent size reduction compared to today’s techniques and an advancement that could boost computer storage capacity.

“Instead of making a chip that stores 20 gigabytes, you have one that can handle one terabyte, or 50 times more data,” Narayan says.

Information storage is not the only area where advances could be made. By introducing metallic properties into ceramics, Narayan says engineers could develop a new generation of ceramic engines able to withstand twice the temperatures of normal engines and achieve fuel economy of 80 miles per gallon. And since the thermal conductivity of the material would be improved, the technique could also have applications in harnessing alternative energy sources like solar energy.

The engineers’ discovery also advances knowledge in the emerging field of “spintronics,” which is dedicated to harnessing energy produced by the spinning of electrons. Most energy used today is harnessed through the movement of current and is limited by the amount of heat that it produces, but the energy created by the spinning of electrons produces no heat. The NC State engineers were able to manipulate the nanomaterial so the electrons’ spin within the material could be controlled, which could prove valuable to harnessing the electrons’ energy. The finding could be important for engineers working to produce more efficient semiconductors.

Working with Narayan on the study were Dr. Sudhakar Nori, a research associate at NC State, Shankar Ramachandran, a former NC State graduate student, and J.T. Prater, an adjunct professor of materials science and engineering. Their findings are published as “The Synthesis and Magnetic Properties of a Nanostructured Ni-MgO System,” which appeared in the June edition of JOM, the journal of the Minerals, Metals and Materials Society. The research was sponsored by the National Science Foundation.

Related research by Narayan was published in April in the International Journal of Nanotechnology.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>