Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacture of indium-free, transparent and conductive layers in a high rate process

29.05.2013
The Fraunhofer FEP has further developed the deposition of niobium-doped titanium dioxide layers to make it a cost-efficient process suitable for industrial use. As a result of this, large glass surfaces can be upgraded towards durable, highly-tailored glasses in a stable and reproducible process.

The need for new, improved and sustainable materials which are available in large quantities is becoming ever more important in all branches of the high-tech sector. Indium is a raw material that is becoming more expensive all the time.


Large-area transparent conductive electrodes from Fraunhofer FEP

It has however played a key role in the manufacture of transparent conductive oxides (TCO) used in touch screens, solar cells and electronic displays. It is for this reason that the development of transparent conductive materials which are indium-free is such an important step towards sustainable products.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP is pioneer in the development of large-area deposition of niobium-doped titanium dioxide layers as an alternative to traditional transparent conductive electrodes containing indium. Titanium dioxide, which is also to be found in opaque white and toothpaste, is in contrast to indium available in abundant quantities and is already subject to widespread and wide-ranging use in the optics industry as a highly refractive material.
As one of the first institutes worldwide, Fraunhofer FEP can procure niobium-doped titanium dioxide layers in a highly efficient magnetron sputtering process which is suitable for application in the industrial sector. Fraunhofer FEP has achieved this in an in-line vacuum system with a coating rate of 55 nm ∙ m/min (at a power input of 16 kW/m). The decisive step which was made in order to achieve this very good deposition rate, and as a result, a manufacturing process which could be implemented on an industrial level, was from the original deposition using planar magnetrons through to the deposition using an oxidized rotatable target.

With a resistivity of 8.7 ∙ 10-4 Ω ∙ cm, the layers have shown themselves to have similar conductive properties and with an extinction coefficient of 0.014 (at a wavelength of 550 nm) to be similarly transparent as other TCO materials, but with a particular resistance to chemicals and climatic and environmental influences. This could be clearly seen after 300 days (from March to January) of exposure to different weather conditions, the layers did not degrade and still remained sufficiently electrically conductive. As a result of their physical resilience, the layers are particularly suitable for use as transparent conductive protective layers for outdoor applications, for example in the automotive or architectural sectors.
Dr. Manuela Junghähnel, Senior Scientist at Fraunhofer FEP, will show at the Glass Performance Days in Tampere / Finland the titanium dioxide layers and the new glass refinement process. Her presentation on the 13th of June 2013 is entitled “Advanced, cost effective and sustainable low-emittance coatings based on titania for improved long wave radiation reflection in window applications”.

More information about the „Glass Performance Days“ can be found under:
http://www.fep.fraunhofer.de/en/events/gpd-finland.html

Press contact:
Annett Arnold, M.Sc.
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Gemany |

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de
http://www.fep.fraunhofer.de/en/events/gpd-finland.html

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>