Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacture of indium-free, transparent and conductive layers in a high rate process

29.05.2013
The Fraunhofer FEP has further developed the deposition of niobium-doped titanium dioxide layers to make it a cost-efficient process suitable for industrial use. As a result of this, large glass surfaces can be upgraded towards durable, highly-tailored glasses in a stable and reproducible process.

The need for new, improved and sustainable materials which are available in large quantities is becoming ever more important in all branches of the high-tech sector. Indium is a raw material that is becoming more expensive all the time.


Large-area transparent conductive electrodes from Fraunhofer FEP

It has however played a key role in the manufacture of transparent conductive oxides (TCO) used in touch screens, solar cells and electronic displays. It is for this reason that the development of transparent conductive materials which are indium-free is such an important step towards sustainable products.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP is pioneer in the development of large-area deposition of niobium-doped titanium dioxide layers as an alternative to traditional transparent conductive electrodes containing indium. Titanium dioxide, which is also to be found in opaque white and toothpaste, is in contrast to indium available in abundant quantities and is already subject to widespread and wide-ranging use in the optics industry as a highly refractive material.
As one of the first institutes worldwide, Fraunhofer FEP can procure niobium-doped titanium dioxide layers in a highly efficient magnetron sputtering process which is suitable for application in the industrial sector. Fraunhofer FEP has achieved this in an in-line vacuum system with a coating rate of 55 nm ∙ m/min (at a power input of 16 kW/m). The decisive step which was made in order to achieve this very good deposition rate, and as a result, a manufacturing process which could be implemented on an industrial level, was from the original deposition using planar magnetrons through to the deposition using an oxidized rotatable target.

With a resistivity of 8.7 ∙ 10-4 Ω ∙ cm, the layers have shown themselves to have similar conductive properties and with an extinction coefficient of 0.014 (at a wavelength of 550 nm) to be similarly transparent as other TCO materials, but with a particular resistance to chemicals and climatic and environmental influences. This could be clearly seen after 300 days (from March to January) of exposure to different weather conditions, the layers did not degrade and still remained sufficiently electrically conductive. As a result of their physical resilience, the layers are particularly suitable for use as transparent conductive protective layers for outdoor applications, for example in the automotive or architectural sectors.
Dr. Manuela Junghähnel, Senior Scientist at Fraunhofer FEP, will show at the Glass Performance Days in Tampere / Finland the titanium dioxide layers and the new glass refinement process. Her presentation on the 13th of June 2013 is entitled “Advanced, cost effective and sustainable low-emittance coatings based on titania for improved long wave radiation reflection in window applications”.

More information about the „Glass Performance Days“ can be found under:
http://www.fep.fraunhofer.de/en/events/gpd-finland.html

Press contact:
Annett Arnold, M.Sc.
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Gemany |

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de
http://www.fep.fraunhofer.de/en/events/gpd-finland.html

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>