Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacture of indium-free, transparent and conductive layers in a high rate process

29.05.2013
The Fraunhofer FEP has further developed the deposition of niobium-doped titanium dioxide layers to make it a cost-efficient process suitable for industrial use. As a result of this, large glass surfaces can be upgraded towards durable, highly-tailored glasses in a stable and reproducible process.

The need for new, improved and sustainable materials which are available in large quantities is becoming ever more important in all branches of the high-tech sector. Indium is a raw material that is becoming more expensive all the time.


Large-area transparent conductive electrodes from Fraunhofer FEP

It has however played a key role in the manufacture of transparent conductive oxides (TCO) used in touch screens, solar cells and electronic displays. It is for this reason that the development of transparent conductive materials which are indium-free is such an important step towards sustainable products.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP is pioneer in the development of large-area deposition of niobium-doped titanium dioxide layers as an alternative to traditional transparent conductive electrodes containing indium. Titanium dioxide, which is also to be found in opaque white and toothpaste, is in contrast to indium available in abundant quantities and is already subject to widespread and wide-ranging use in the optics industry as a highly refractive material.
As one of the first institutes worldwide, Fraunhofer FEP can procure niobium-doped titanium dioxide layers in a highly efficient magnetron sputtering process which is suitable for application in the industrial sector. Fraunhofer FEP has achieved this in an in-line vacuum system with a coating rate of 55 nm ∙ m/min (at a power input of 16 kW/m). The decisive step which was made in order to achieve this very good deposition rate, and as a result, a manufacturing process which could be implemented on an industrial level, was from the original deposition using planar magnetrons through to the deposition using an oxidized rotatable target.

With a resistivity of 8.7 ∙ 10-4 Ω ∙ cm, the layers have shown themselves to have similar conductive properties and with an extinction coefficient of 0.014 (at a wavelength of 550 nm) to be similarly transparent as other TCO materials, but with a particular resistance to chemicals and climatic and environmental influences. This could be clearly seen after 300 days (from March to January) of exposure to different weather conditions, the layers did not degrade and still remained sufficiently electrically conductive. As a result of their physical resilience, the layers are particularly suitable for use as transparent conductive protective layers for outdoor applications, for example in the automotive or architectural sectors.
Dr. Manuela Junghähnel, Senior Scientist at Fraunhofer FEP, will show at the Glass Performance Days in Tampere / Finland the titanium dioxide layers and the new glass refinement process. Her presentation on the 13th of June 2013 is entitled “Advanced, cost effective and sustainable low-emittance coatings based on titania for improved long wave radiation reflection in window applications”.

More information about the „Glass Performance Days“ can be found under:
http://www.fep.fraunhofer.de/en/events/gpd-finland.html

Press contact:
Annett Arnold, M.Sc.
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Gemany |

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de
http://www.fep.fraunhofer.de/en/events/gpd-finland.html

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>