Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making light work of artificial muscles

24.01.2011
Polymer films that unfurl in the light could be the first of a new family of functional materials

A new form of self-assembling polymer film that bends and stretches when hit by light is pointing the way to a new family of functional materials. This flexing film is the first material to have been made by coaxing complex molecules to form large-scale, highly ordered three dimensional arrays—a discovery that could change the way that many active material are made, from artificial muscles to solar cells.

Nobuhiko Hosono, Takuzo Aida and colleagues at RIKEN Advanced Science Institute in Wako and The University of Tokyo developed the self-assembly protocol. The researchers found that brush-shaped polymers would form an orderly film when hot-pressed between two sheets of Teflon[1].

They made their discovery while studying a polymer in which each side chain, or bristle, of the brush structure incorporates light-responsive azobenzenes—two benzene rings separated by a pair of nitrogen atoms. When hit by UV light, the bond between the nitrogens rearranges, contracting the side chain.

The researchers used this photoisomerization behavior to confirm the remarkable long-range order of the polymer structure. Because the side chains were all aligned, when those at the surface were hit by light they curled up in concert, bending the film. A second beam of light at a different wavelength reversed the isomerization process, and the film relaxed back to its original shape.

The trick to making the material is to heat it between two sheets of Teflon that have been drawn tight in one direction, says Hosono. This tension orients the Teflon sheets’ internal structure along a single axis, which acts as a template for the molten polymer brushes sandwiched in between. The side chains of the polymer brush align with the Teflon, pulling each brush upright. As each polymer brush aligns in the same way, it forms a repeating three-dimensional array.

Hosono, Aida and colleagues expect the technique to work for other polymer brushes with similar side chains. To improve the artificial muscle-like behavior of their polymer film, Hosono says the team will try cross-linking the polymer side chains. This will prevent the molecular structure from becoming disordered as the polymer repeatedly curls and relaxes over many cycles, giving the muscle a longer lifetime.

The team is already assessing other potential applications. The wide-area three-dimensional molecular ordering of the polymer brush has great potential for building electronic devices, says Hosono. “We now have designed a new type of polymer brush for development of highly efficient thin-layer organic solar cells.”

The corresponding author for this highlight is based at the Functional Soft Matter Research Group, RIKEN Advanced Science Institute.

Journal information

[1] Hosono, N., Kajitani, T., Fukushima, T., Ito, K., Sasaki, S., Takata, M. & Aida T. Large-area three-dimensional molecular ordering of a polymer brush by one-step processing. Science 330, 808-811 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New approach to revolutionize the production of molecular hydrogen
22.05.2017 | Technische Universität Dresden

nachricht Photocatalyst makes hydrogen production 10 times more efficient
19.05.2017 | Kobe University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>