Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making it big

09.05.2014

The use of a fabrication technique borrowed from the semiconductor industry brings metamaterial applications a step closer to reality

Metamaterials
Artificial materials engineered to have properties not found in nature, such as a negative refractive index
are engineered to interact with light and sound waves in ways that natural materials cannot. They thus have the potential to be used in exciting new applications, such as invisibility cloaks, high-resolution lenses, efficient and compact antennas, and highly sensitive sensors.

While the theory of this interaction is relatively well understood, it has been challenging to fabricate metamaterials that are large enough to be practical. Now, Yi Zhou and colleagues at the A*STAR Data Storage Institute in Singapore have demonstrated a promising new fabrication technique that can produce large areas of an important class of metamaterial, known as fishnet metamaterials1.

Most optical metamaterials consist of tiny repeated metallic structures. When light of a particular frequency falls on them, it establishes oscillating fields inside each structure. These fields can resonate with each other and thereby produce desirable collective behavior. Fishnet metamaterials usually have several vertically stacked repeat units spread out over much larger lateral dimensions. Because they are structured both vertically and laterally, they are called three-dimensional materials.

Fishnet metamaterials are usually made in one of two ways. They can be fabricated by carefully patterning individual films and then stacking these films on top of each other. However, this multilayer process is difficult, as it requires careful alignment of the films.

The second approach is to pattern a sacrificial substrate and then deposit repeated layers onto it. This ‘pattern-first’ process suffers from its own difficulties, the most important of which is that the total thickness of the final fishnet material is typically limited to tens of nanometers or less. This restricts the kind of resonances that can be achieved and, in turn, the functionality of the final film.

Zhou and colleagues were able to increase the total thickness of pattern-first fishnet films to around 300 nanometers, allowing five bilayers of film to be deposited and resulting in a strong characteristic resonance and pronounced metamaterial behavior. To achieve this, they adopted a technique called trilayer lift-off, which is commonly used in industry but seldom applied in research laboratories. It involves patterning a sacrificial layer of a photoresist resting on a layer of silicon dioxide under which lies a second photoresist layer.

By alternating the patterning and etching steps, the A*STAR team could achieve a film thickness greatly exceeding the size of the lateral patterns etched into the film. “This technique will help researchers design large-area three-dimensional nanodevices more easily,” says Zhou, “and help bring the science of metamaterials to reality.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute 

Journal information

Zhou, Y., Chen, X. Y., Fu, Y H., Vienne, G., Kuznetsov, A. I., & Luk’yanchuk, B. Fabrication of large-area 3D optical fishnet metamaterial by laser interference lithography. Applied Physics Letters 103, 123116 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: A*STAR Applied Storage dimensions large materials metamaterials nanometers

More articles from Materials Sciences:

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>