Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making it big

09.05.2014

The use of a fabrication technique borrowed from the semiconductor industry brings metamaterial applications a step closer to reality

Metamaterials
Artificial materials engineered to have properties not found in nature, such as a negative refractive index
are engineered to interact with light and sound waves in ways that natural materials cannot. They thus have the potential to be used in exciting new applications, such as invisibility cloaks, high-resolution lenses, efficient and compact antennas, and highly sensitive sensors.

While the theory of this interaction is relatively well understood, it has been challenging to fabricate metamaterials that are large enough to be practical. Now, Yi Zhou and colleagues at the A*STAR Data Storage Institute in Singapore have demonstrated a promising new fabrication technique that can produce large areas of an important class of metamaterial, known as fishnet metamaterials1.

Most optical metamaterials consist of tiny repeated metallic structures. When light of a particular frequency falls on them, it establishes oscillating fields inside each structure. These fields can resonate with each other and thereby produce desirable collective behavior. Fishnet metamaterials usually have several vertically stacked repeat units spread out over much larger lateral dimensions. Because they are structured both vertically and laterally, they are called three-dimensional materials.

Fishnet metamaterials are usually made in one of two ways. They can be fabricated by carefully patterning individual films and then stacking these films on top of each other. However, this multilayer process is difficult, as it requires careful alignment of the films.

The second approach is to pattern a sacrificial substrate and then deposit repeated layers onto it. This ‘pattern-first’ process suffers from its own difficulties, the most important of which is that the total thickness of the final fishnet material is typically limited to tens of nanometers or less. This restricts the kind of resonances that can be achieved and, in turn, the functionality of the final film.

Zhou and colleagues were able to increase the total thickness of pattern-first fishnet films to around 300 nanometers, allowing five bilayers of film to be deposited and resulting in a strong characteristic resonance and pronounced metamaterial behavior. To achieve this, they adopted a technique called trilayer lift-off, which is commonly used in industry but seldom applied in research laboratories. It involves patterning a sacrificial layer of a photoresist resting on a layer of silicon dioxide under which lies a second photoresist layer.

By alternating the patterning and etching steps, the A*STAR team could achieve a film thickness greatly exceeding the size of the lateral patterns etched into the film. “This technique will help researchers design large-area three-dimensional nanodevices more easily,” says Zhou, “and help bring the science of metamaterials to reality.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute 

Journal information

Zhou, Y., Chen, X. Y., Fu, Y H., Vienne, G., Kuznetsov, A. I., & Luk’yanchuk, B. Fabrication of large-area 3D optical fishnet metamaterial by laser interference lithography. Applied Physics Letters 103, 123116 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: A*STAR Applied Storage dimensions large materials metamaterials nanometers

More articles from Materials Sciences:

nachricht Rare-earth innovation to improve nylon manufacturing
26.03.2015 | DOE/Ames Laboratory

nachricht Behind the dogmas of good old hydrodynamics
26.03.2015 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Novel coatings combine protection with colour effects

27.03.2015 | Trade Fair News

A first glimpse inside a macroscopic quantum state

27.03.2015 | Physics and Astronomy

Researchers master gene editing technique in mosquito that transmits deadly diseases

27.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>