Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Eco-Friendly ‘Pre-Fab Nanoparticles’

15.08.2014

UMass Amherst team invents a way to create versatile, water-soluble nano-modules

A team of materials chemists, polymer scientists, device physicists and others at the University of Massachusetts Amherst today report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices. Details are in the current issue of Nano Letters.


UMass Amherst

Postdoctoral research associate Monojit Bag (left) and graduate student Tim Gehan (right) synthesize polymer nanoparticles for use in organic-based solar cells being made at the UMass Amherst-based energy center. Deep purple nanoparticles are forming in the small glass container above Gehan’s left hand.

Lead investigator, chemist Dhandapani Venkataraman, points out that the new techniques successfully address two major goals for device manufacture: controlling molecular assembly and avoiding toxic solvents like chlorobenzene. “Now we have a rational way of controlling this assembly in a water-based system,” he says. “It’s a completely new way to look at problems. With this technique we can force it into the exact structure that you want.”

Materials chemist Paul Lahti, co-director with Thomas Russell of UMass Amherst’s Energy Frontiers Research Center (EFRC) supported by the U.S. Department of Energy, says, “One of the big implications of this work is that it goes well beyond organic photovoltaics or solar cells, where this advance is being applied right now. Looking at the bigger picture, this technique offers a very promising, flexible and ecologically friendly new approach to assembling materials to make device structures.”

Lahti likens the UMass Amherst team’s advance in materials science to the kind of benefits the construction industry saw with prefabricated building units. “This strategy is right along that general philosophical line,” he says. “Our group discovered a way to use sphere packing to get all sorts of materials to behave themselves in a water solution before they are sprayed onto surfaces in thin layers and assembled into a module. We are pre-assembling some basic building blocks with a few predictable characteristics, which are then available to build your complex device.”

“Somebody still has to hook it up and fit it out the way they want,” Lahti adds. “It’s not finished, but many parts are pre-assembled. And you can order characteristics that you need, for example, a certain electron flow direction or strength. All the modules can be tuned to have the ability to provide electron availability in a certain way. The availability can be adjusted, and we’ve shown that it works.”

The new method should reduce the time nano manufacturing firms spend in trial-and-error searches for materials to make electronic devices such as solar cells, organic transistors and organic light-emitting diodes. “The old way can take years,” Lahti says.

“Another of our main objectives is to make something that can be scaled up from nano- to mesoscale, and our method does that. It is also much more ecologically friendly because we use water instead of dangerous solvents in the process,” he adds.

For photovoltaics, Venkataraman points out, “The next thing is to make devices with other polymers coming along, to increase power conversion efficiency and to make them on flexible substrates. In this paper we worked on glass, but we want to translate to flexible materials and produce roll-to-roll manufactured materials with water. We expect to actually get much greater efficiency.” He suggests that reaching 5 percent power conversion efficiency would justify the investment for making small, flexible solar panels to power devices such as smart phones.

If the average smart phone uses 5 watts of power and all 307 million United States users switched from batteries to flexible solar, it could save more than 1500 megawatts per year. “That’s nearly the output of a nuclear power station,” Venkataraman says, “and it’s more dramatic when you consider that coal-fired power plants generate 1 megawatt and release 2,250 lbs. of carbon dioxide. So if a fraction of the 6.6 billion mobile phone users globally changed to solar, it would reduce our carbon footprint a lot.”

Doctoral student and first author Tim Gehan says that organic solar cells made in this way can be semi-transparent, as well, “so you could replace tinted windows in a skyscraper and have them all producing electricity during the day when it’s needed. And processing is much cheaper and cleaner with our cells than in traditional methods.”

Venkataraman credits organic materials chemist Gehan, with postdoctoral fellow and device physicist Monojit Bag, with making “crucial observations” and using “persistent detective work” to get past various roadblocks in the experiments. “These two were outstanding in helping this story move ahead,” he notes. For their part, Gehan and Bag say they got critical help from the Amherst Fire Department, which loaned them an infrared camera to pinpoint some problem hot spots on a device.

It was Bag who put similar sized and charged nanoparticles together to form a building block, then used an artist’s airbrush to spray layers of electrical circuits atop each other to create a solar-powered device. He says, “Here we pre-formed structures at nanoscale so they will form a known structure assembled at the meso scale, from which you can make a device. Before, you just hoped your two components in solution would form the right mesostructure, but with this technique we can direct it to that end.”

This work at the Polymer-Based Materials for Harvesting Solar Energy is part of an EFRC supported by the U.S. DOE’s Office of Basic Energy Sciences.

Contact Information

Dhandapani Venkataraman
dv@chem.umass.edu

Paul Lahti
413-545-4890
lahti@chem.umass.edu

Dhandapani Venkataraman | newswise
Further information:
http://www.umass.edu

More articles from Materials Sciences:

nachricht Body temperature triggers newly developed polymer to change shape
09.02.2016 | University of Rochester

nachricht Graphene is strong, but is it tough?
05.02.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>