Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Eco-Friendly ‘Pre-Fab Nanoparticles’

15.08.2014

UMass Amherst team invents a way to create versatile, water-soluble nano-modules

A team of materials chemists, polymer scientists, device physicists and others at the University of Massachusetts Amherst today report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices. Details are in the current issue of Nano Letters.


UMass Amherst

Postdoctoral research associate Monojit Bag (left) and graduate student Tim Gehan (right) synthesize polymer nanoparticles for use in organic-based solar cells being made at the UMass Amherst-based energy center. Deep purple nanoparticles are forming in the small glass container above Gehan’s left hand.

Lead investigator, chemist Dhandapani Venkataraman, points out that the new techniques successfully address two major goals for device manufacture: controlling molecular assembly and avoiding toxic solvents like chlorobenzene. “Now we have a rational way of controlling this assembly in a water-based system,” he says. “It’s a completely new way to look at problems. With this technique we can force it into the exact structure that you want.”

Materials chemist Paul Lahti, co-director with Thomas Russell of UMass Amherst’s Energy Frontiers Research Center (EFRC) supported by the U.S. Department of Energy, says, “One of the big implications of this work is that it goes well beyond organic photovoltaics or solar cells, where this advance is being applied right now. Looking at the bigger picture, this technique offers a very promising, flexible and ecologically friendly new approach to assembling materials to make device structures.”

Lahti likens the UMass Amherst team’s advance in materials science to the kind of benefits the construction industry saw with prefabricated building units. “This strategy is right along that general philosophical line,” he says. “Our group discovered a way to use sphere packing to get all sorts of materials to behave themselves in a water solution before they are sprayed onto surfaces in thin layers and assembled into a module. We are pre-assembling some basic building blocks with a few predictable characteristics, which are then available to build your complex device.”

“Somebody still has to hook it up and fit it out the way they want,” Lahti adds. “It’s not finished, but many parts are pre-assembled. And you can order characteristics that you need, for example, a certain electron flow direction or strength. All the modules can be tuned to have the ability to provide electron availability in a certain way. The availability can be adjusted, and we’ve shown that it works.”

The new method should reduce the time nano manufacturing firms spend in trial-and-error searches for materials to make electronic devices such as solar cells, organic transistors and organic light-emitting diodes. “The old way can take years,” Lahti says.

“Another of our main objectives is to make something that can be scaled up from nano- to mesoscale, and our method does that. It is also much more ecologically friendly because we use water instead of dangerous solvents in the process,” he adds.

For photovoltaics, Venkataraman points out, “The next thing is to make devices with other polymers coming along, to increase power conversion efficiency and to make them on flexible substrates. In this paper we worked on glass, but we want to translate to flexible materials and produce roll-to-roll manufactured materials with water. We expect to actually get much greater efficiency.” He suggests that reaching 5 percent power conversion efficiency would justify the investment for making small, flexible solar panels to power devices such as smart phones.

If the average smart phone uses 5 watts of power and all 307 million United States users switched from batteries to flexible solar, it could save more than 1500 megawatts per year. “That’s nearly the output of a nuclear power station,” Venkataraman says, “and it’s more dramatic when you consider that coal-fired power plants generate 1 megawatt and release 2,250 lbs. of carbon dioxide. So if a fraction of the 6.6 billion mobile phone users globally changed to solar, it would reduce our carbon footprint a lot.”

Doctoral student and first author Tim Gehan says that organic solar cells made in this way can be semi-transparent, as well, “so you could replace tinted windows in a skyscraper and have them all producing electricity during the day when it’s needed. And processing is much cheaper and cleaner with our cells than in traditional methods.”

Venkataraman credits organic materials chemist Gehan, with postdoctoral fellow and device physicist Monojit Bag, with making “crucial observations” and using “persistent detective work” to get past various roadblocks in the experiments. “These two were outstanding in helping this story move ahead,” he notes. For their part, Gehan and Bag say they got critical help from the Amherst Fire Department, which loaned them an infrared camera to pinpoint some problem hot spots on a device.

It was Bag who put similar sized and charged nanoparticles together to form a building block, then used an artist’s airbrush to spray layers of electrical circuits atop each other to create a solar-powered device. He says, “Here we pre-formed structures at nanoscale so they will form a known structure assembled at the meso scale, from which you can make a device. Before, you just hoped your two components in solution would form the right mesostructure, but with this technique we can direct it to that end.”

This work at the Polymer-Based Materials for Harvesting Solar Energy is part of an EFRC supported by the U.S. DOE’s Office of Basic Energy Sciences.

Contact Information

Dhandapani Venkataraman
dv@chem.umass.edu

Paul Lahti
413-545-4890
lahti@chem.umass.edu

Dhandapani Venkataraman | newswise
Further information:
http://www.umass.edu

More articles from Materials Sciences:

nachricht First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D
30.09.2016 | Oak Ridge National Laboratory

nachricht New Multiferroic Materials from Building Blocks
29.09.2016 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>