Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Cars and Aeroplanes Cheaper, Safer and More Efficient

10.11.2008
DFG Funds Two Major Instruments to Test Components Made of Fibre-reinforced Composites

Two novel testing facilities for materials research will be provided to the Technical University of Braunschweig and Hamburg University of Technology by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

For the first time in a university environment, these two major instruments totalling 3.4 million euros will allow researchers to investigate, under realistic stress conditions, the failure mechanisms of large automobile and aircraft components (panels) made of fibre-reinforced composite materials.

Until now, this research objective could only be pursued using small laboratory samples, with computers unable to provide adequate simulations.

Components made of fibre-reinforced composites, such as aircraft and automobile body parts, can be designed to be stronger or more rigid than metal-based components. An additional benefit is the option to integrate material-monitoring sensors directly into the component. This could make driving and flying cheaper and safer, as well as more energy-efficient.

“Fibre-reinforced composites have been used rather conservatively in automotive and aircraft engineering,” says Burkhard Jahnen from the DFG Engineering Sciences Division, who is in charge of coordinating the DFG’s new major-instrumentation initiative. “Because engineers are reluctant to go to the limits of composites and lack sufficient data on how these materials fatigue in long-term use, they tend to design components made of these materials rather generously — which makes aeroplanes, for example, heavier than necessary. That’s why the groundbreaking designs that would be possible with fibre composites are still waiting in the starting blocks.”

But the findings enabled by the new testing facilities could change this. Up to 60 tons heavy, 6 metres wide and 6.6 metres tall, these large instruments will introduce previously unavailable technology to basic research in Germany. The testing equipment in Hamburg, for example, can expose entire aircraft body segments to the kind of vibration they would be exposed to in air traffic. Thus the knowledge transfer between basic materials research and practical application can close a central gap.

Out of ten funding proposals submitted under the DFG’s major-instrumentation initiative, the two proposals from Braunschweig and Hamburg-Harburg were selected because their interdisciplinary approaches proved most convincing to the international team of reviewers. The new testing facilities will also be made available to researchers from other universities investigating fibre-reinforced composites.

Jutta Hoehn | alfa
Further information:
http://www.dfg.de

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>