Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Cars and Aeroplanes Cheaper, Safer and More Efficient

10.11.2008
DFG Funds Two Major Instruments to Test Components Made of Fibre-reinforced Composites

Two novel testing facilities for materials research will be provided to the Technical University of Braunschweig and Hamburg University of Technology by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

For the first time in a university environment, these two major instruments totalling 3.4 million euros will allow researchers to investigate, under realistic stress conditions, the failure mechanisms of large automobile and aircraft components (panels) made of fibre-reinforced composite materials.

Until now, this research objective could only be pursued using small laboratory samples, with computers unable to provide adequate simulations.

Components made of fibre-reinforced composites, such as aircraft and automobile body parts, can be designed to be stronger or more rigid than metal-based components. An additional benefit is the option to integrate material-monitoring sensors directly into the component. This could make driving and flying cheaper and safer, as well as more energy-efficient.

“Fibre-reinforced composites have been used rather conservatively in automotive and aircraft engineering,” says Burkhard Jahnen from the DFG Engineering Sciences Division, who is in charge of coordinating the DFG’s new major-instrumentation initiative. “Because engineers are reluctant to go to the limits of composites and lack sufficient data on how these materials fatigue in long-term use, they tend to design components made of these materials rather generously — which makes aeroplanes, for example, heavier than necessary. That’s why the groundbreaking designs that would be possible with fibre composites are still waiting in the starting blocks.”

But the findings enabled by the new testing facilities could change this. Up to 60 tons heavy, 6 metres wide and 6.6 metres tall, these large instruments will introduce previously unavailable technology to basic research in Germany. The testing equipment in Hamburg, for example, can expose entire aircraft body segments to the kind of vibration they would be exposed to in air traffic. Thus the knowledge transfer between basic materials research and practical application can close a central gap.

Out of ten funding proposals submitted under the DFG’s major-instrumentation initiative, the two proposals from Braunschweig and Hamburg-Harburg were selected because their interdisciplinary approaches proved most convincing to the international team of reviewers. The new testing facilities will also be made available to researchers from other universities investigating fibre-reinforced composites.

Jutta Hoehn | alfa
Further information:
http://www.dfg.de

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>