Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a better invisibility cloak

12.11.2012
The first functional "cloaking" device reported by Duke University electrical engineers in 2006 worked like a charm, but it wasn't perfect. Now a member of that laboratory has developed a new design that ties up one of the major loose ends from the original device.

These new findings could be important in transforming how light or other waves can be controlled or transmitted. Just as traditional wires gave way to fiber optics, the new meta-material could revolutionize the transmission of light and waves.


This is Nathan Landy with cloaking device.

Credit: Duke University Photography

Because the goal of this type of research involves taming light, a new field of transformational optics has emerged. The results of the Duke experiments were published online Nov. 11 in the journal Nature Materials.

The Duke team has extensive experience in creating "meta-materials," man-made objects that have properties often absent in natural ones. Structures incorporating meta-materials can be designed to guide electromagnetic waves around an object, only to have them emerge on the other side as if they had passed through an empty volume of space, thereby cloaking the object.

"In order to create the first cloaks, many approximations had to be made in order to fabricate the intricate meta-materials used in the device," said Nathan Landy, a graduate student working in the laboratory of senior investigator David R. Smith, William Bevan Professor of electrical and computer engineering at Duke's Pratt School of Engineering.

"One issue, which we were fully aware of, was loss of the waves due to reflections at the boundaries of the device," Landy said. He explained that it was much like reflections seen on clear glass. The viewer can see through the glass just fine, but at the same time the viewer is aware the glass is present due to light reflected from the surface of the glass. "Since the goal was to demonstrate the basic principles of cloaking, we didn't worry about these reflections."

Landy has now reduced the occurrence of reflections by using a different fabrication strategy. The original cloak consisted of parallel and intersecting strips of fiberglass etched with copper. Landy's cloak used a similar row-by-row design, but added copper strips to create a more complicated -- and better performing -- material. The strips of the device, which is about two-feet square, form a diamond-shape, with the center left empty.

When any type of wave, like light, strikes a surface, it can be either reflected or absorbed, or a combination of both. In the case of earlier cloaking experiments, a small percentage of the energy in the waves was absorbed, but not enough to affect the overall functioning of the cloak.

The cloak was naturally divided into four quadrants. Landy explained the "reflections" noted in earlier cloaks tended to occur along the edges and corners of the spaces within and around the meta-material.

"Each quadrant of the cloak tended to have voids, or blind spots, at their intersections and corners with each other," Landy said. "After many calculations, we thought we could correct this situation by shifting each strip so that it met its mirror image at each interface.

"We built the cloak, and it worked," he said. "It split light into two waves which traveled around an object in the center and re-emerged as the single wave with minimal loss due to reflections."

Landy said this approach could have more applications than just cloaks. For example, meta-materials can "smooth out" twists and turns in fiber optics, in essence making them seem straighter. This is important, Landy said, because each bend attenuates the wave within it.

The researchers are now working to apply the principles learned in the latest experiments to three dimensions, a much greater challenge than in a two-dimensional device.

The Office of Naval Research and the Army Research Office supported the research.

CITATION: "A full-parameter unidirectional metamaterial cloak for microwaves," Nathan Landy and David R. Smith; Nature Materials, Nov. 12, 2012. DOI: 10.1038/nmat3476

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>