Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz and Kaiserslautern to supply state-of-the-art technologies to businesses

06.02.2013
Two new joint large-scale research projects in materials science and spintronics at the universities of Mainz and Kaiserslautern with application potential

Two large-scale research projects in materials science and spintronics have been initiated at Johannes Gutenberg University Mainz (JGU) and the University of Kaiserslautern.


An industrially produced wafer with memory units resulting from the joint research projects at the universities of Mainz and Kaiserslautern.

photo/©: Andrés Conca Parra

Both projects have a financial volume of more than EUR 3.8 million and are receiving support through the "Wachstum durch Innovation" (Growth through Innovation) program to the tune of some EUR 2.37 million from the European Regional Development Fund (ERDF) and the state agencies for science and commerce. Their objective is to promote the rapid transition from university research to industrial application. It often takes years for theoretical ideas and products developed at universities to find their way into commercial production.

The two new projects, STeP and TT-DINEMA, are designed to help speed up the process of conversion to marketable procedures and products. "The two projects will not only enable us to ensure that our universities remain at the cutting edge in the fields of materials science and spintronics in future, but will also make a very important contribution to helping companies in Rhineland-Palatinate gain quick and easy access to innovation-relevant expertise in these high-tech areas," claimed Minister of Science Doris Ahnen.

"The STeP project represents an important element in the development of a process of efficient preliminary research within the innovation network Magnetic Microsystems InnoMag e.V.," Minister of Economic Affairs Eveline Lemke went on to emphasize. The aim of the Mainz-based network is to develop innovative magnetic microsystems for new applications with significant commercial potential in areas such the automotive industry, automation, bioanalytics, and security technology. In the automation sector, for example, such products are invaluable because of their high resolution, reliability, and robustness when used in equipment such as assembly and machine tools and industrial robots.

The purpose of the Spintronic Technology Platform in Rhineland-Palatinate (STeP) is to promote the sustained build-up of technical competencies and to support regional companies working in the spintronics sector. The platform has been specifically designed to bolster research into and the development of magnetic coating systems, which are particularly suitable for use in products such as sensors and memory storage units. At the core of the research being undertaken by STeP are so-called Heusler materials. The objective is to develop "building block systems" using innovative coating systems, which can then be flexibly adapted to meet the wide range of different functional and technological challenges. In a new approach, the results of academic research are being immediately transferred onto an industrial production line that meets DIN standards. This is an important requirement if experimental data is to be subsequently directly transformed into conventional production processes in the semi-conductor industry. The researchers have been able to win over as a partner the company Sensitec GmbH (Mainz), which has recently gained attention as a supplier of state-of-the-art sensors for the Mars Rover Curiosity.
The aim of the TT-DINEMA ("Technologietransfer-Dienstleistungszentrum für Neue Materialien" or Technology Transfer Service Center for New Materials) project is to establish an internationally competitive and independent service center that can provide original new material concepts. It represents the starting point for innovative development projects in various fields of applications, ranging from solar technology through medical technology to thermoelectrics, and is likely to be of particular benefit to small and medium-sized companies. Again, Heusler compounds are at the focus of attention concerning the applied materials. These relatively simple chemical compounds represent an ideal combination in that they have a large diversity of different physical characteristics but can be relatively easily manufactured. This makes them suitable for use in various products, such as solar cells, semi-conductors, and thermoelectric systems for power generation from waste heat. In addition to their broad application potential, these materials are also interesting from the commercial point of view because of their low cost, sustainability, environmental friendliness, and ease of processing.

The current primary intention of the TT-DINEMA project is to acquire two highly complex, state-of-the-art pieces of equipment: an industrial coating machine called sputtering deposition plant and a system for the production of starting materials. The complicated infrastructure and process technology needed for the provision of services in the research and development sector will be provided by the universities of Mainz and Kaiserslautern.

The Graduate School of Excellence "Materials Science IN MainZ" (MAINZ) and the state research center OPTIMAS are also involved in both projects.
Contact:
Dr. Frederick Casper
Professor Dr. Claudia Felser
moment group
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz
phone +49 6131 39-24403
e-mail: casperf@uni-mainz.de
http://www.superconductivity.de/

Professor Dr. Mathias Kläui
Professor Dr. Gerhard Jakob
Physics of Condensed Matter group (KOMET)
Institute of Physics
Johannes Gutenberg University Mainz
phone +49 6131 39-24345
fax +49 6131 39-24076
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de

Dr. Britta Leven
Magnetism group
Faculty of Physics
University of Kaiserslautern
phone +49 631 205-4037
fax +49 631 205-4095
e-mail: leven@physik.uni-kl.de
http://www.physik.uni-kl.de/hillebrands/home/

Professor Dr. Burkard Hillebrands
Magnetism group
Faculty of Physics
University of Kaiserslautern
phone +49 631 205-4037
fax +49 631 205-4095
e-mail: hilleb@physik.uni-kl.de
http://www.physik.uni-kl.de/hillebrands/home/
-- Joint press release of Johannes Gutenberg University Mainz and the University of Kaiserslautern --

Petra Giegerich | idw
Further information:
http://www.superconductivity.de/
http://www.klaeui-lab.physik.uni-mainz.de/
http://www.physik.uni-kl.de/hillebrands/home/

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>