Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic materials: Forging ahead with a back-to-basics approach

30.08.2013
Atomic-level simulations hint at how to control the magnetic properties of layered materials for data storage applications

Scientists have recently started to explore the possibility of using an intrinsic property of the electron known as spin for processing and storing information. Magnetic fields can influence the dynamics of electron spin, so harnessing this potential relies on precision engineering of crystalline storage materials.


The atoms in a crystalline material known as Co4Pd1 are arranged into stacked layers labeled A, B and C (left). A single ‘mistake’ in this arrangement (right) can affect the material’s properties.

Modified, with permission, from Ref. 1 © 2012 EPLA

Chee Kwan Gan and co©workers at the A*STAR Institute of High Performance Computing and the A*STAR Data Storage Institute in Singapore have used theoretical calculations to show how the magnetic characteristics of specific materials can be controlled at the atomic level1. Their results could lead to novel magnetic recording devices.

One promising route to such spintronic devices is to design structures consisting of alternating layers of different magnetic atoms. The strength of the magnetic influence is stronger in the direction of the multilayer stack than it is parallel to the planes of the atoms. This so-called perpendicular magnetic anisotropy is useful for spintronic memory devices because it allows a greater storage density than a conventional electronic device.

The properties of these structures, however, are highly sensitive to the precise arrangement of the crystal. Just one misplaced layer of atoms ¡ª a stacking fault ¡ª can noticeably alter device performance (see image). Previous studies usually ignored these special defects, ¡°but nature sometimes makes ¡®mistakes¡¯,¡± explains Gan. ¡°It is important to understand these defects and subsequently use them to control the material¡¯s physical properties.¡±

Gan and his team went back to basics to better understand how atom-level imperfections affect the properties of these multilayers. They used a powerful mathematical approach known as density functional theory. This approach uses only fundamental equations from quantum mechanics to model the behavior of electrons in these structures, without requiring any prior assumptions.

The researchers modeled a material consisting of alternating layers of cobalt and palladium atoms. Multilayers of these atoms have previously exhibited a large perpendicular magnetic anisotropy when the cobalt layers are less than 0.8 nanometers thick. Gan and co-workers then assessed how stacking faults and the ratio of cobalt to palladium atoms affected this anisotropy. Their results showed that a stacking fault could enhance the magnetic anisotropy in structures with a relatively thick cobalt layer. They also found that the anisotropy increased almost linearly with increasing cobalt content.

High magnetic anisotropy materials have potential for use in the next generation of ultrafast and high-capacity magnetic random-access memory, Gan explains. The improved understanding of these materials from this research will guide the way to realizing such devices.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Data Storage Institute

Journal information

Wu, G., Khoo, K. H., Jhon, M. H., Meng, H., Lua, S. Y. H. et al. First-principles calculations of the magnetic anisotropic constants of Co¨CPd multilayers: Effect of stacking faults. Europhysics Letters 99, 17001 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6727
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>