Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Ceramics Films for Smaller Transformers

14.10.2010
Siemens is developing magnetic ceramic films so that the high-performance electronic circuits used in lighting systems and other such devices can be made smaller and much easier to manufacture.

This type of circuit adapts the voltage, current, and frequency to the electrical consumer, for instance, a lamp. In order to save space, as many components as possible — resistors and coils, for example — are incorporated into the individual layers of ceramic printed circuit boards, thus creating metallic surfaces or conductors.



Until now, however, it has been difficult to embed magnetic cores, like those used for transformers, into ceramics. The new film solves this problem, thus saving space in car headlights that use discharge lamps, for example. Such headlights are fitted with ballasts to create the high voltage needed for generating light. The new system would make it possible to incorporate the ballast directly into the lamp in the future.

Transformers change the current and voltage of alternating current. They consist of a closed magnetic core with two windings. If the component is incorporated into a printed circuit board, the windings are created in two of the board’s layers and the magnetic core is installed into a drilled opening. Doing this in ceramic printed circuit boards is a very complicated and expensive process because the magnets and ceramics expand differently when heated, making separate sintering or firing procedures necessary.

However, the researchers at Siemens have now developed a magnetic ceramic film which is laid on the transformer winding between the printed circuit board’s individual layers, where it takes over the function of the magnetic core. The ferrite film is only a few tenths of a millimeter thick and can be fired together with the ceramic circuit board in a single process step at less than 900 degrees Celsius. A transformer embedded in this manner and having an edge length of about 1.5 to two centimeters and a height of 1.5 millimeters transfers an output of 120 watts at a frequency of 2.5 megahertz.

The new, flat high-frequency transformer technology is designed for applications in which space is at a premium and ambient temperatures are high. In addition to being used for lighting and industrial applications, the new film can overcome the difficulty posed by simultaneous inductive transmission of energy and of sensor and control signals between otherwise incompatible printed circuit board technologies for high-performance and control electronics.

Among the beneficiaries of the new film are quick-charging systems for electric cars. Such systems have to handle currents of about 100 amperes while providing power to the communication units linking the charging station with the battery. The German Federal Ministry of Education and Research is helping to fund the film’s development.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

More articles from Materials Sciences:

nachricht Less is more to produce top-notch 2D materials
20.11.2017 | The Agency for Science, Technology and Research (A*STAR)

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>