Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machines based on paper and driven by air have been created by scientists at Harvard University in the USA

09.02.2012
These inexpensive robots can stretch, bend and twist under control, and lift objects up to 120 times their own weight. Being soft, they can apply gentle and even pressure, and adapt to varied surfaces.

The fact that paper can bend but not stretch is the key to this remarkable invention, published today in the journal Advanced Functional Materials. Led by Prof. George Whitesides, the researchers have encased a paper sheet in an air-tight elastic material derived from silicones, sometimes called silicon rubbers. On one side of the paper, the silicone is laced with tiny air channels.


Flexible Paper Robots

As air is pumped into the channels (termed PneuNets), the rubbery material on that side expands, forcing the paper to bend. Postdoctoral researcher Ramses Martinez likens the structures to balloons, “When the balloon part of the structure expands it doesn’t become round (as does a child’s balloon), but adopts more complex shapes in response to the constraints imposed by the paper sheets.”

Indeed, quite complicated shapes and movements can be created by simply altering the pattern of channels and by folding the paper in a process the researchers liken to origami. “The methods we developed are astonishingly simple for the complex motions that they generate. Once we understood the materials to use, the best procedures for fabrication and the kinds of designs that worked best.”

Actuators are what scientists call devices that move or change shape in response to some input and are the moving parts of robots. In their Adv. Funct. Mater. paper, the researchers given examples of contracting actuators (the video shows a worm-like one, but some resembling paper lanterns are also demonstrated), elongating actuators, and pleated bellows. One bellows only 8.2 grams itself is shown to lift a 1 kilogram weight – as shown in the image (fig 6 in the article). Restricting movement further by gluing folds or fastening them together with paper strips can cause the shapes to turn corners or twist as they expand. The scientists drew inspiration from the motions of starfish, worms and squid, but used pneumatics and compressed air rather than muscles.

The publication discusses the use of polyester/cellulose paper and a tough siloxane elastomer called Ecoflex®, but Prof. Whitesides and his group have also used materials such as cotton cloth, fiber, and nylon or metallic mesh as the non-stretching base. The production is simple: a mold is used to create pneumatic channels in the elastomer, which is then bonded to elastomer-soaked paper. Compressed air is pumped into the channels through a small valve. Alternatively, for bellows-type operation, a pleated cylinder of paper is soaked in elastomer, the cylinder is capped, and air is pumped into the centre of the cylinder. A strip of elastomer linking the caps ensures the paper returns fully to its original shape and size on the removal of air.

The work combines Prof. Whitesides’ previous experience of “squishy” robots using silicon-based materials and pneumatic activation with his development of paper as a support for tiny, low-cost, ‘microfluidic’ analytical devices.

Dr. Martinez is enthusiastic about the future for the paper robots, “We hope these structures can be developed into assistants for humans. Unlike the types of (machines) robots used in assembly lines (which are designed to be very strong and fast, but they are also very dangerous for humans to be around when they are operating), these actuators can be more ‘human-friendly’. They might, thus, provide ‘extra fingers or hands’ for surgeons, or handle easily damaged structures, such as eggs or fruit.” Use in disaster relief, where ability for machines to navigate complex pathways would be advantageous, is also envisaged. By adding such things as light sources, or metal wires to allow electrical conductivity, potential applications are considerably broadened.

The scientists wish to acknowledge support in part by The Defence Advanced Research Projects Agency (DARPA) and the US Department of Energy.

R. V. Martinez, C. R. Fish, X. Chen, and G. M. Whitesides, “Elastomeric Origami: Programmable Paper–Elastomer Composites as Pneumatic Actuators”, Adv. Funct. Mater. 2012, Vol. 13, DOI: adfm.201202978.

Contacts:

Prof. G. M. Whitesides, Dr. R. V. Martinez
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
gwhitesides@gmwgroup.harvard.edu; rmartinez@gmwgroup.harvard.edu
http://gmwgroup.harvard.edu/
Peter Reuell, Harvard University Press Officer
peter_reuell@harvard.edu
Eric Mazzacone, DARPA Public Affairs Officer
Eric.Mazzacone@darpa.mil
The article is available at http://doi.wiley.com/10.1002/adma.20120172978

Carmen Teutsch | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>