Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-Priced Plastic Photovoltaics

23.10.2013
Article in "The Journal of Chemical Physics" Describes New Approach to Making Cheaper, More Efficient Solar Panels

Photovoltaic devices, which tap the power of the sun and convert it to electricity, offer a green -- and potentially unlimited -- alternative to fossil fuel use. So why haven’t solar technologies been more widely adopted?


Imperial College/S. Wood & J. Bailey

The polymer blend morphology without (left) and with (right) nanowires.

Quite simply, "they’re too expensive," says Ji-Seon Kim, a senior lecturer in experimental solid-state physics at Imperial College London, who, along with her colleagues, has come up with a technology that might help bring the prices down.

The scientists describe their new approach to making cheaper, more efficient solar panels in a paper in The Journal of Chemical Physics, produced by AIP Publishing.

"To collect a lot of sunlight you need to cover a large area in solar panels, which is very expensive for traditional inorganic -- usually silicon -- photovoltaics," explains Kim. The high costs arise because traditional panels must be made from high purity crystals that require high temperatures and vacuum conditions to manufacture.

A cheaper solution is to construct the photovoltaic devices out of organic compounds—building what are essentially plastic solar cells. Organic semiconducting materials, and especially polymers, can be dissolved to make an ink and then simply "printed" in a very thin layer, some 100 billionths of a meter thick, over a large area. "Covering a large area in plastic is much cheaper than covering it in silicon, and as a result the cost per Watt of electricity-generating capacity has the potential to be much lower," she says.

One major difficulty with doing this, however, is controlling the arrangement of polymer molecules within the thin layer. In their paper, Kim and colleagues describe a new method for exerting such control. "We have developed an advanced structural probe technique to determine the molecular packing of two different polymers when they are mixed together," she says. By manipulating how the molecules of the two different polymers pack together, Kim and her colleagues created ordered pathways -- or "nanowires" -- along which electrical charges can more easily travel. This enables the solar cell to produce more electrical current, she said.

"Our work highlights the importance of the precise arrangement of polymer molecules in a polymer solar cell for it to work efficiently," says Kim, who expects polymer solar cells to reach the commercial market within 5 to 10 years.

The article, "Understanding the Relationship between Molecular Order and Charge Transport Properties in Conjugated Polymer Based Organic Blend Photovoltaic Devices" by Sebastian Wood, Jong Soo Kim, David T. James, Wing C. Tsoi, Craig E. Murphy and Ji-Seon Kim appears in The Journal of Chemical Physics. See: http://dx.doi.org/10.1063/1.4816706

The authors of this manuscript are affiliated with Imperial College London, National Physical Laboratory in the United Kingdom, KAIST in the Republic of Korea.

ABOUT THE JOURNAL
The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>