Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low-Priced Plastic Photovoltaics

Article in "The Journal of Chemical Physics" Describes New Approach to Making Cheaper, More Efficient Solar Panels

Photovoltaic devices, which tap the power of the sun and convert it to electricity, offer a green -- and potentially unlimited -- alternative to fossil fuel use. So why haven’t solar technologies been more widely adopted?

Imperial College/S. Wood & J. Bailey

The polymer blend morphology without (left) and with (right) nanowires.

Quite simply, "they’re too expensive," says Ji-Seon Kim, a senior lecturer in experimental solid-state physics at Imperial College London, who, along with her colleagues, has come up with a technology that might help bring the prices down.

The scientists describe their new approach to making cheaper, more efficient solar panels in a paper in The Journal of Chemical Physics, produced by AIP Publishing.

"To collect a lot of sunlight you need to cover a large area in solar panels, which is very expensive for traditional inorganic -- usually silicon -- photovoltaics," explains Kim. The high costs arise because traditional panels must be made from high purity crystals that require high temperatures and vacuum conditions to manufacture.

A cheaper solution is to construct the photovoltaic devices out of organic compounds—building what are essentially plastic solar cells. Organic semiconducting materials, and especially polymers, can be dissolved to make an ink and then simply "printed" in a very thin layer, some 100 billionths of a meter thick, over a large area. "Covering a large area in plastic is much cheaper than covering it in silicon, and as a result the cost per Watt of electricity-generating capacity has the potential to be much lower," she says.

One major difficulty with doing this, however, is controlling the arrangement of polymer molecules within the thin layer. In their paper, Kim and colleagues describe a new method for exerting such control. "We have developed an advanced structural probe technique to determine the molecular packing of two different polymers when they are mixed together," she says. By manipulating how the molecules of the two different polymers pack together, Kim and her colleagues created ordered pathways -- or "nanowires" -- along which electrical charges can more easily travel. This enables the solar cell to produce more electrical current, she said.

"Our work highlights the importance of the precise arrangement of polymer molecules in a polymer solar cell for it to work efficiently," says Kim, who expects polymer solar cells to reach the commercial market within 5 to 10 years.

The article, "Understanding the Relationship between Molecular Order and Charge Transport Properties in Conjugated Polymer Based Organic Blend Photovoltaic Devices" by Sebastian Wood, Jong Soo Kim, David T. James, Wing C. Tsoi, Craig E. Murphy and Ji-Seon Kim appears in The Journal of Chemical Physics. See:

The authors of this manuscript are affiliated with Imperial College London, National Physical Laboratory in the United Kingdom, KAIST in the Republic of Korea.

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See:

Jason Socrates Bardi | Newswise
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>