Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low friction coating and corrosion protection - nanocomposite material with double effect

03.04.2012
Materials researchers from Saarbruecken developed a low friction coating combining two properties: It shows lubrication properties similar to grease and oil and it protects from corrosion.
The new material is suitable for the coating of metals and metal alloys, such as steel, aluminium or magnesium. From 23 to 27 April 2012, the researchers from INM — Leibniz Institute for New Materials present these and further results at the leading trade fair "Research and Technology" in Hall 2 at the stand C 54.

Cog wheels, threads, machine parts, cranks and bicycle chains wear out, when their metallic surfaces rub against each other. Lubricants and oils can help to prevent that. But such lubricants containing fat combine with dirt and dust and agglutinate or resinify after a while. Machine parts need to be cleaned and greased in a time-consuming and expensive way – increasing maintenance and higher usage of resources or the temporary breakdown of the engines are the consequences. By using a low friction coating free of grease, such a problem can be avoided. The researchers at INM developed such a low friction coating, which also protects from corrosion.
"What is really special about our low friction coating is its composition and structure", explains Carsten Becker-Willinger, head of the program division "Nanomere". We embedded platelet-like solid-state lubricants and platelet-like particles in a binder. When the composite is applied onto a surface, a well-arranged microstructure forms, in which the various particles arrange in an imbricate structure", Becker-Willinger continues. A so-called transfer film forms between the low friction coating and the counterpart, which allows an almost frictionless sliding of the surfaces on each other. "Only through the special ratio of components, our composite has a very low friction coefficient. If we used only the solid-state lubricant, the friction coefficient would be significantly higher", the chemist notes.

"Our low friction coating can do even more", the expert for chemical nanotechnology explains. "The imbricate structure does not only allow an almost frictionless sliding, but it also shows the effect of a barrier. This is a special advantage, as our material prevents the penetration of humidity or salts to the metal surfaces, i.e. it also prevents from corrosion." Thus, the composite shows a corrosion resistance of over 1,000 hours in the neutral salt spray test on low-alloy steel.

The low friction coating can be applied by using the conventional wet-chemical processes, such as spray- or dip-coating. By simple thermal curing, the imbricate structure forms in self-organization without further interference.

Contact:
Dr. Carsten Becker-Willinger
INM – Leibniz-Institut für Neue Materialien gGmbH
Speaker Chemical Nanotechnology
Head of the Program Division Nanomere
Phone: +49 (0)681-9300-196
Email: nanomere@inm-gmbh.de

INM, situated in Saarbruecken/Germany, is an internationally leading research centre for innovative materials. Specialised in the three research fields of Chemical Nanotechnology, Interface Materials and Materials in Biology, the institute provides research and development from molecule to pilot production delivered by a highly skilled team of chemists, physicists, biologists, materials and engineering scientists. It cooperates with national and international institutes and develops materials with tailor-made properties for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>