Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low friction coating and corrosion protection - nanocomposite material with double effect

03.04.2012
Materials researchers from Saarbruecken developed a low friction coating combining two properties: It shows lubrication properties similar to grease and oil and it protects from corrosion.
The new material is suitable for the coating of metals and metal alloys, such as steel, aluminium or magnesium. From 23 to 27 April 2012, the researchers from INM — Leibniz Institute for New Materials present these and further results at the leading trade fair "Research and Technology" in Hall 2 at the stand C 54.

Cog wheels, threads, machine parts, cranks and bicycle chains wear out, when their metallic surfaces rub against each other. Lubricants and oils can help to prevent that. But such lubricants containing fat combine with dirt and dust and agglutinate or resinify after a while. Machine parts need to be cleaned and greased in a time-consuming and expensive way – increasing maintenance and higher usage of resources or the temporary breakdown of the engines are the consequences. By using a low friction coating free of grease, such a problem can be avoided. The researchers at INM developed such a low friction coating, which also protects from corrosion.
"What is really special about our low friction coating is its composition and structure", explains Carsten Becker-Willinger, head of the program division "Nanomere". We embedded platelet-like solid-state lubricants and platelet-like particles in a binder. When the composite is applied onto a surface, a well-arranged microstructure forms, in which the various particles arrange in an imbricate structure", Becker-Willinger continues. A so-called transfer film forms between the low friction coating and the counterpart, which allows an almost frictionless sliding of the surfaces on each other. "Only through the special ratio of components, our composite has a very low friction coefficient. If we used only the solid-state lubricant, the friction coefficient would be significantly higher", the chemist notes.

"Our low friction coating can do even more", the expert for chemical nanotechnology explains. "The imbricate structure does not only allow an almost frictionless sliding, but it also shows the effect of a barrier. This is a special advantage, as our material prevents the penetration of humidity or salts to the metal surfaces, i.e. it also prevents from corrosion." Thus, the composite shows a corrosion resistance of over 1,000 hours in the neutral salt spray test on low-alloy steel.

The low friction coating can be applied by using the conventional wet-chemical processes, such as spray- or dip-coating. By simple thermal curing, the imbricate structure forms in self-organization without further interference.

Contact:
Dr. Carsten Becker-Willinger
INM – Leibniz-Institut für Neue Materialien gGmbH
Speaker Chemical Nanotechnology
Head of the Program Division Nanomere
Phone: +49 (0)681-9300-196
Email: nanomere@inm-gmbh.de

INM, situated in Saarbruecken/Germany, is an internationally leading research centre for innovative materials. Specialised in the three research fields of Chemical Nanotechnology, Interface Materials and Materials in Biology, the institute provides research and development from molecule to pilot production delivered by a highly skilled team of chemists, physicists, biologists, materials and engineering scientists. It cooperates with national and international institutes and develops materials with tailor-made properties for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>