Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using living cells as nanotechnology factories

10.10.2008
In the tiny realm of nanotechnology, scientists have used a wide variety of materials to build atomic scale structures. But just as in the construction business, nanotechnology researchers can often be limited by the amount of raw materials. Now, Biodesign Institute at Arizona State University researcher Hao Yan has avoided these pitfalls by using cells as factories to make DNA based nanostructures inside a living cell.

The results were published in the early online edition of the Proceedings of the National Academy of Sciences.

Yan specializes in a fast-growing field within nanotechnology -- commonly known as structural DNA nanotechnology -- that uses the basic chemical units of DNA, abbreviated as C, T, A, or G, to self-fold into a number of different building blocks that can further self-assemble into patterned structures.

"This is a good example of artificial nanostructures that can be replicated using the machineries in live cells" said Yan. "Cells are really good at making copies of double stranded DNA and we have used the cell like a copier machine to produce many, many copies of complex DNA nanostructures."

DNA nanotechnologists have made some very exciting achievements during the past five to 10 years. But DNA nanotechnology has been limited by the need to chemically synthesize all of the material from scratch. To date, it has strictly been a test tube science, where researchers have developed many toolboxes for making different DNA nanostructures to attach and organize other molecules including nanoparticles and other biomolecules.

"If you need to make a single gram of a DNA nanostructure, you need to order one gram of the starting DNA materials. Scientists have previously used chemical methods to copy branched DNA structures, and there has also been significant work in using long-stranded DNA sequences replicated from cells or phage viruses to scaffold short helper DNA sequences to form 2-D or 3-D objects," said Yan, who is also a professor in the Department of Chemistry and Biochemistry at ASU.

"We have always dreamed of scaling up DNA nanotechnology. One way to scale that it up is to use the cellular system because simple DNA can be replicated inside the cell. We wanted to know if the cell's copy machine could tolerate single stranded DNA nanostructures that contain complicated secondary structures."

To test the nanoscale manufacturing capabilities of cells, Yan and his fellow researchers, Chenxiang Lin, Sherri Rinker and Yan Liu at ASU and their collaborators Ned Seeman and Xing Wang at New York University went back to reproducing the very first branched nanostructure made up of DNA- a cross-shaped, four-arm DNA junction and another DNA junction structure containing a different crossover topology.

To copy these branched DNA nanostructures inside a living cell, the ASU and NYU research team first shipped the cargo inside a bacteria cell. They cut and pasted the DNA necessary to make these structures into a phagemid, a virus-like particle that infects a bacteria cell. Once inside the cell, the phagemid used the cell just like a photocopier machine to reproduce millions of copies of the DNA. By theoretically starting with just a single phagemid infection, and a single milliliter of cultured cells, Yan found that the cells could churn out trillions of the DNA junction nanostructures.

The DNA nanostructures produced in the cells were also found to fold correctly, just like the previously built test tube structures. According to Yan, the results also proved the key existence of the DNA nanostructures during the cell's routine DNA replication and division cycles. "When a DNA nanostructure gets replicated, it does exist and can survive the complicated cellular machinery. And it looks like the cell can tolerate this kind of structure and still do its job. It's amazing," said Yan.

Yan acknowledges that this is just the first step, but foresees there are many interesting DNA variations to consider next. "The fact that the natural cellular machinery can tolerate artificial DNA objects is quite intriguing, and we don't know what the limit is yet."

Yan's group may be able to change and evolve DNA nanostructures and devices using the cellular system and the technology may also open up some possibilities for synthetic biology applications.

"I'm very excited about the future of DNA nanotechnology, but there is a lot of work to be done. An interesting research topic to pursue is the interface of DNA nanostructures with live cells; it is full of opportunities," said Yan.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: DNA DNA nanotechnology DNA sequence atomic scale structures

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>