Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithography: High-resolution images get richer in contrast

11.12.2012
A method that boosts the contrast of high-resolution optical images has the potential to enable lithography at the nanoscale

When looking to produce the tiny semiconductor components used in electronic devices, photolithography is the process of choice. It not only provides high-resolution images, but also allows high-throughput production.


A scanning-electron micrograph of a test sample used to demonstrate a superlens's resolving power of better than 50 nanometers.



Copyright : 2012 A*STAR Institute of Materials Research and Engineering When looking to produce the tiny sem

However, as miniaturization of electronic circuits advances unceasingly, traditional photolithography hits both fundamental and cost limits. Now, a new photolithographic technique that will produce features smaller than those possible today is on the horizon.

This development is thanks to an international research team led by Jing Hua Teng and Hong Liu from the A*STAR Institute of Materials Research and Engineering, Singapore, which included co-workers from the A*STAR Data Storage Institute, Singapore.

In traditional photolithography, light is used to write, for example, the layout of an electronic circuit onto a substrate coated with a light-sensitive material. The assembly is then chemically processed in a way that makes the desired pattern appear on the final component. The minimum size of the features that can be produced with this method is given by the optical diffraction limit: the resolution that can be obtained in optical images cannot be higher than about half of the wavelength of the light used.
This limit is typically on the order of several hundreds of nanometers. And, with a view to further miniaturization of electronic components, it constitutes a genuine roadblock, explains Teng.

Physicists have proposed several methods to beat the diffraction limit, including the use of so-called superlenses. The resolution of superlens images exceeds the diffraction limit; however, these images tend to suffer from poor contrast, and this has limited their usefulness for lithography.

Teng and his co-workers demonstrated that they could produce superlens images with a resolution below 50 nanometers and a contrast sufficient for photolithographic purposes. The trick was to carefully control the surface of the lens, which consists of a thin silver film. “A smooth surface ensures that very little light is lost due to scattering,” explains Teng. Through careful optimization of the fabrication process, he and his team succeeded in producing silver superlenses with imperfections that were less than 2 nanometers in height.

The team’s next goal is to optimize the lithography process and the materials involved to meet the high-throughput requirements for industry-scale applications. The result should be a versatile tool for optical lithography in the nano-regime. “Superlens lithography is a promising technology for next-generation optical nanolithography for the semiconductor industry, but also for bioengineering and data storage,” says Liu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Data Storage Institute

Journal information

Liu, H., Wang, B., Ke, L., Deng, J., Choy, C. C. et al. High contrast superlens lithography engineered by loss reduction. Advanced Functional Materials 22, 3777–3783 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>