Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithography: High-resolution images get richer in contrast

11.12.2012
A method that boosts the contrast of high-resolution optical images has the potential to enable lithography at the nanoscale

When looking to produce the tiny semiconductor components used in electronic devices, photolithography is the process of choice. It not only provides high-resolution images, but also allows high-throughput production.


A scanning-electron micrograph of a test sample used to demonstrate a superlens's resolving power of better than 50 nanometers.



Copyright : 2012 A*STAR Institute of Materials Research and Engineering When looking to produce the tiny sem

However, as miniaturization of electronic circuits advances unceasingly, traditional photolithography hits both fundamental and cost limits. Now, a new photolithographic technique that will produce features smaller than those possible today is on the horizon.

This development is thanks to an international research team led by Jing Hua Teng and Hong Liu from the A*STAR Institute of Materials Research and Engineering, Singapore, which included co-workers from the A*STAR Data Storage Institute, Singapore.

In traditional photolithography, light is used to write, for example, the layout of an electronic circuit onto a substrate coated with a light-sensitive material. The assembly is then chemically processed in a way that makes the desired pattern appear on the final component. The minimum size of the features that can be produced with this method is given by the optical diffraction limit: the resolution that can be obtained in optical images cannot be higher than about half of the wavelength of the light used.
This limit is typically on the order of several hundreds of nanometers. And, with a view to further miniaturization of electronic components, it constitutes a genuine roadblock, explains Teng.

Physicists have proposed several methods to beat the diffraction limit, including the use of so-called superlenses. The resolution of superlens images exceeds the diffraction limit; however, these images tend to suffer from poor contrast, and this has limited their usefulness for lithography.

Teng and his co-workers demonstrated that they could produce superlens images with a resolution below 50 nanometers and a contrast sufficient for photolithographic purposes. The trick was to carefully control the surface of the lens, which consists of a thin silver film. “A smooth surface ensures that very little light is lost due to scattering,” explains Teng. Through careful optimization of the fabrication process, he and his team succeeded in producing silver superlenses with imperfections that were less than 2 nanometers in height.

The team’s next goal is to optimize the lithography process and the materials involved to meet the high-throughput requirements for industry-scale applications. The result should be a versatile tool for optical lithography in the nano-regime. “Superlens lithography is a promising technology for next-generation optical nanolithography for the semiconductor industry, but also for bioengineering and data storage,” says Liu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Data Storage Institute

Journal information

Liu, H., Wang, B., Ke, L., Deng, J., Choy, C. C. et al. High contrast superlens lithography engineered by loss reduction. Advanced Functional Materials 22, 3777–3783 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>