Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid shock absorbers

08.11.2017

Remarkable liquid materials called colloids stiffen under impact. Researchers funded by the SNSF have studied the effect of powerful impacts such as those produced by firearms or micrometeorites.

At first glance, colloids resemble homogeneous liquids such as milk or blood plasma. But in fact they consist of particles in suspension. Some colloids have remarkable properties: they may stiffen following an impact and absorb surface shocks. This property is of interest for many applications, from bulletproof vests to protective shields for satellites.


Researchers funded by the SNSF have determined how certain liquids stiffen in response to powerful impacts.

Researchers funded by the Swiss National Science Foundation (SNSF) found that how these colloids work can change dramatically in response to very strong impacts. The scientists have also developed a model that makes these properties easier to understand. The work has been published in the journal PNAS.(*)

SNSF professor Lucio Isa and his team at ETH Zurich create so-called two-dimensional colloidal crystals. The crystals consist of silica beads several thousandths of a millimetre in diameter in a mixture of water and glycerine. In collaboration with Chiara Daraio of Caltech (USA) and Stéphane Job at the Institut supérieur de mécanique de Paris, the researchers studied how this type of material absorbs shocks.

The team observed that when the colloidal particles are micrometre-sized, the force and speed of impact change how the shocks are absorbed. Below a certain threshold, the viscosity of the liquid is the determining factor, and classical models describe the phenomenon very well.

"You have to imagine these tiny glass beads in their liquid," says Isa. "During an impact, the beads move and disperse the fluid around them, more or less rapidly depending on its viscosity. The movement of the fluid is what causes the whole thing to stiffen."

When the shock is particularly intense, the liquid no longer flows between the beads, and they deform. "In this situation, the physical properties of the beads strongly influence shock absorption, and the usual equations no longer apply," says Isa.

Impact of a bullet

For the particles to have an effect, the impact must be extremely intense, such as that caused by a firearm or micrometeorites (objects the size of grains of sand capable of hitting satellites at the speed of ten kilometres per second).

"It was not easy to generate impacts of this intensity in the laboratory," explains Isa. To do so, the researchers covered a small percentage of the silica beads with gold. When exposed to pulsed laser light, the gold evaporated, producing a powerful shock wave in the colloid comparable to that caused, say, by the impact of a micrometeorite.
Ultra-high-speed cameras recorded the action through the lens of a microscope.

"Colloids displaying such properties are really interesting materials to study," says Isa. "For instance, they may even be used for the future development of shields protecting satellites against micrometeorite impacts."

This research was conducted at ETH Zurich, Supméca – Institut supérieur de mécanique de Paris and Caltech. The research was funded by the SNSF and by the Metaudible project under the aegis of the French National Research Agency (ANR) and the Fondation de Recherche pour l'Aéronautique et l'Espace (FRAE).

(*) I. Buttinoni et al.: Direct observation of impact propagation and absorption in dense colloidal monolayers. PNAS (2017) doi: 10.1073/pnas.1712266114


Contact

Prof. Lucio Isa
Laboratory for Interfaces, Soft Matter and Assembly
Department of Materials
ETH Zurich
8092 Zurich
Phone: +41 44 633 63 76
E-mail: lucio.isa@mat.ethz.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-171108-press-release-li... 'Image available for media use'
http://www.pnas.org/content/early/2017/10/25/1712266114.short?rss=1 'doi: 10.1073/pnas.1712266114'

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>