Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light pulses control graphene's electrical behavior


Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector.

The new findings are published in the journal Physical Review Letters, in a paper by graduate student Alex Frenzel, Nuh Gedik, and three others.

The researchers found that by controlling the concentration of electrons in a graphene sheet, they could change the way the material responds to a short but intense light pulse. If the graphene sheet starts out with low electron concentration, the pulse increases the material's electrical conductivity. This behavior is similar to that of traditional semiconductors, such as silicon and germanium.

But if the graphene starts out with high electron concentration, the pulse decreases its conductivity — the same way that a metal usually behaves. Therefore, by modulating graphene's electron concentration, the researchers found that they could effectively alter graphene's photoconductive properties from semiconductorlike to metallike.

The finding also explains the photoresponse of graphene reported previously by different research groups, which studied graphene samples with differing concentration of electrons. "We were able to tune the number of electrons in graphene, and get either response," Frenzel says.

To perform this study, the team deposited graphene on top of an insulating layer with a thin metallic film beneath it; by applying a voltage between graphene and the bottom electrode, the electron concentration of graphene could be tuned. The researchers then illuminated graphene with a strong light pulse and measured the change of electrical conduction by assessing the transmission of a second, low-frequency light pulse.

In this case, the laser performs dual functions. "We use two different light pulses: one to modify the material, and one to measure the electrical conduction," Gedik says, adding that the pulses used to measure the conduction are much lower frequency than the pulses used to modify the material behavior. To accomplish this, the researchers developed a device that was transparent, Frenzel explains, to allow laser pulses to pass through it.

This all-optical method avoids the need for adding extra electrical contacts to the graphene. Gedik, the Lawrence C. and Sarah W. Biedenharn Associate Professor of Physics, says the measurement method that Frenzel implemented is a "cool technique. Normally, to measure conductivity you have to put leads on it," he says. This approach, by contrast, "has no contact at all."

Additionally, the short light pulses allow the researchers to change and reveal graphene's electrical response in only a trillionth of a second.

In a surprising finding, the team discovered that part of the conductivity reduction at high electron concentration stems from a unique characteristic of graphene: Its electrons travel at a constant speed, similar to photons, which causes the conductivity to decrease when the electron temperature increases under the illumination of the laser pulse. "Our experiment reveals that the cause of photoconductivity in graphene is very different from that in a normal metal or semiconductor," Frenzel says.

The researchers say the work could aid the development of new light detectors with ultrafast response times and high sensitivity across a wide range of light frequencies, from the infrared to ultraviolet. While the material is sensitive to a broad range of frequencies, the actual percentage of light absorbed is small. Practical application of such a detector would therefore require increasing absorption efficiency, such as by using multiple layers of graphene, Gedik says.


The research team also included Jing Kong, the ITT Career Development Associate Professor of Electrical Engineering at MIT, who provided the graphene samples used for the experiments; physics postdoc Chun Hung Lui; and Yong Cheol Shin, a graduate student in materials science and engineering. The work received support from the U.S. Department of Energy and the National Science Foundation.

Andrew Carleen | Eurek Alert!
Further information:

Further reports about: MIT Massachusetts concentration conductivity detector electrons explains frequencies graphene measure properties

More articles from Materials Sciences:

nachricht The route to high temperature superconductivity goes through the flat land
23.11.2015 | Aalto University

nachricht Quantum spin could create unstoppable, one-dimensional electron waves
19.11.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Plant Defense as a Biotech Tool

25.11.2015 | Life Sciences

“move“ – on course for the mobility of the future

25.11.2015 | Power and Electrical Engineering

Understanding a missing link in how antidepressants work

25.11.2015 | Life Sciences

More VideoLinks >>>