Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light pulses control graphene's electrical behavior

01.08.2014

Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector.

The new findings are published in the journal Physical Review Letters, in a paper by graduate student Alex Frenzel, Nuh Gedik, and three others.

The researchers found that by controlling the concentration of electrons in a graphene sheet, they could change the way the material responds to a short but intense light pulse. If the graphene sheet starts out with low electron concentration, the pulse increases the material's electrical conductivity. This behavior is similar to that of traditional semiconductors, such as silicon and germanium.

But if the graphene starts out with high electron concentration, the pulse decreases its conductivity — the same way that a metal usually behaves. Therefore, by modulating graphene's electron concentration, the researchers found that they could effectively alter graphene's photoconductive properties from semiconductorlike to metallike.

The finding also explains the photoresponse of graphene reported previously by different research groups, which studied graphene samples with differing concentration of electrons. "We were able to tune the number of electrons in graphene, and get either response," Frenzel says.

To perform this study, the team deposited graphene on top of an insulating layer with a thin metallic film beneath it; by applying a voltage between graphene and the bottom electrode, the electron concentration of graphene could be tuned. The researchers then illuminated graphene with a strong light pulse and measured the change of electrical conduction by assessing the transmission of a second, low-frequency light pulse.

In this case, the laser performs dual functions. "We use two different light pulses: one to modify the material, and one to measure the electrical conduction," Gedik says, adding that the pulses used to measure the conduction are much lower frequency than the pulses used to modify the material behavior. To accomplish this, the researchers developed a device that was transparent, Frenzel explains, to allow laser pulses to pass through it.

This all-optical method avoids the need for adding extra electrical contacts to the graphene. Gedik, the Lawrence C. and Sarah W. Biedenharn Associate Professor of Physics, says the measurement method that Frenzel implemented is a "cool technique. Normally, to measure conductivity you have to put leads on it," he says. This approach, by contrast, "has no contact at all."

Additionally, the short light pulses allow the researchers to change and reveal graphene's electrical response in only a trillionth of a second.

In a surprising finding, the team discovered that part of the conductivity reduction at high electron concentration stems from a unique characteristic of graphene: Its electrons travel at a constant speed, similar to photons, which causes the conductivity to decrease when the electron temperature increases under the illumination of the laser pulse. "Our experiment reveals that the cause of photoconductivity in graphene is very different from that in a normal metal or semiconductor," Frenzel says.

The researchers say the work could aid the development of new light detectors with ultrafast response times and high sensitivity across a wide range of light frequencies, from the infrared to ultraviolet. While the material is sensitive to a broad range of frequencies, the actual percentage of light absorbed is small. Practical application of such a detector would therefore require increasing absorption efficiency, such as by using multiple layers of graphene, Gedik says.

###

The research team also included Jing Kong, the ITT Career Development Associate Professor of Electrical Engineering at MIT, who provided the graphene samples used for the experiments; physics postdoc Chun Hung Lui; and Yong Cheol Shin, a graduate student in materials science and engineering. The work received support from the U.S. Department of Energy and the National Science Foundation.

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: MIT Massachusetts concentration conductivity detector electrons explains frequencies graphene measure properties

More articles from Materials Sciences:

nachricht ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane
27.03.2015 | Oak Ridge National Laboratory

nachricht Rare-earth innovation to improve nylon manufacturing
26.03.2015 | DOE/Ames Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>