Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light pulses control graphene's electrical behavior

01.08.2014

Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector.

The new findings are published in the journal Physical Review Letters, in a paper by graduate student Alex Frenzel, Nuh Gedik, and three others.

The researchers found that by controlling the concentration of electrons in a graphene sheet, they could change the way the material responds to a short but intense light pulse. If the graphene sheet starts out with low electron concentration, the pulse increases the material's electrical conductivity. This behavior is similar to that of traditional semiconductors, such as silicon and germanium.

But if the graphene starts out with high electron concentration, the pulse decreases its conductivity — the same way that a metal usually behaves. Therefore, by modulating graphene's electron concentration, the researchers found that they could effectively alter graphene's photoconductive properties from semiconductorlike to metallike.

The finding also explains the photoresponse of graphene reported previously by different research groups, which studied graphene samples with differing concentration of electrons. "We were able to tune the number of electrons in graphene, and get either response," Frenzel says.

To perform this study, the team deposited graphene on top of an insulating layer with a thin metallic film beneath it; by applying a voltage between graphene and the bottom electrode, the electron concentration of graphene could be tuned. The researchers then illuminated graphene with a strong light pulse and measured the change of electrical conduction by assessing the transmission of a second, low-frequency light pulse.

In this case, the laser performs dual functions. "We use two different light pulses: one to modify the material, and one to measure the electrical conduction," Gedik says, adding that the pulses used to measure the conduction are much lower frequency than the pulses used to modify the material behavior. To accomplish this, the researchers developed a device that was transparent, Frenzel explains, to allow laser pulses to pass through it.

This all-optical method avoids the need for adding extra electrical contacts to the graphene. Gedik, the Lawrence C. and Sarah W. Biedenharn Associate Professor of Physics, says the measurement method that Frenzel implemented is a "cool technique. Normally, to measure conductivity you have to put leads on it," he says. This approach, by contrast, "has no contact at all."

Additionally, the short light pulses allow the researchers to change and reveal graphene's electrical response in only a trillionth of a second.

In a surprising finding, the team discovered that part of the conductivity reduction at high electron concentration stems from a unique characteristic of graphene: Its electrons travel at a constant speed, similar to photons, which causes the conductivity to decrease when the electron temperature increases under the illumination of the laser pulse. "Our experiment reveals that the cause of photoconductivity in graphene is very different from that in a normal metal or semiconductor," Frenzel says.

The researchers say the work could aid the development of new light detectors with ultrafast response times and high sensitivity across a wide range of light frequencies, from the infrared to ultraviolet. While the material is sensitive to a broad range of frequencies, the actual percentage of light absorbed is small. Practical application of such a detector would therefore require increasing absorption efficiency, such as by using multiple layers of graphene, Gedik says.

###

The research team also included Jing Kong, the ITT Career Development Associate Professor of Electrical Engineering at MIT, who provided the graphene samples used for the experiments; physics postdoc Chun Hung Lui; and Yong Cheol Shin, a graduate student in materials science and engineering. The work received support from the U.S. Department of Energy and the National Science Foundation.

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: MIT Massachusetts concentration conductivity detector electrons explains frequencies graphene measure properties

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>