Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lemongrass fiber as lost circulation material in drilling fluid

18.08.2014

Universiti Teknologi MARA researchers are investigating the properties of lemongrass fibers to help prevent fluid circulation problems while drilling for oil and gas.

In the oil and gas industry, drilling mud is used to (1) to suspend cuttings to prevent it sagging at the drill bit during shutdown, (2) to transport it to the surface, (3) to cool and lubricate the drill bit, (4) to provide enough hydrostatics pressure to prevent fluids from formation enter to the well bore and (5) to form a thin filter cake to seal the damage formation.

One of the biggest problems encountered during drilling is when the smaller particles of the drilling fluid break through into the larger void spaces in the formation, which leads to lost circulation. Lost circulation can result in blow-outs, stuck pipe, lost rig time and the leasing of wells, costing millions of dollars.

Lost circulation materials (LCM) are drilling fluid additives that are designed to make sure that the drilling fluid circulates down the hole and returns to the surface for recirculation rather than being lost to the formation drilled.

There is a wide range of LCM that is currently being applied, depending on the viability of materials and loss rates - ranging from particles, flakes and cement gunk to chemical sealants. LCM selection is usually based on cost, nature of losses, types of drilling fluid being used and sometimes on the type of formations being drilled

Universiti Teknologi MARA researchers are investigating the properties of lemongrass to be used as LCM

These days, it is increasingly necessary to drill in ultra-deep waters, which entails working in high temperature and pressure conditions. Here Oil based mud (OBM) is the more prefered mediaum to use compared to water based mud.

Therefore, a laboratory study was carried out to investigate the effect of temperature on the performance of lemongrass with different sizes of LCM in oil based mud.

It was found that different temperatures and sizes have great effects on the lemongrass LCM in the oil based mud. The optimum temperature for lemongrass LCM is 275 degrees Fahrenhite with the sizes of 250 microns.

Based on the result, it shows that lemongrass is able to perform a good LCM in OBM based on filtrate volume and filter cake thickness. The thickness of the filter cake obtained was in the range of 2 to 25 mm which satisfies the requirement from industry.

The findings also discovered that the lemongrass with the size of 150 microns is the suitable material to be used as LCM to replace conventional LCM.

Nurul Aimi Ghazali
Faculty of Chemical Engineering,
University Teknologi MARA
Malaysia
Email: nurulaimi@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: UiTM circulation conditions fiber lemongrass fibers materials temperature

More articles from Materials Sciences:

nachricht “Reverse Engineering” Materials for More Efficient Heating and Cooling
29.10.2014 | American Institute of Physics (AIP)

nachricht Watching the hidden life of materials
28.10.2014 | McGill University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

European salamanders and newts vulnerable to fungal disease from Asia

31.10.2014 | Ecology, The Environment and Conservation

NIST 'combs' the atmosphere to measure greenhouse gases

30.10.2014 | Earth Sciences

First detailed picture of a cancer-related cell enzyme in action on a chromosome unit

30.10.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>