Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lemongrass fiber as lost circulation material in drilling fluid

18.08.2014

Universiti Teknologi MARA researchers are investigating the properties of lemongrass fibers to help prevent fluid circulation problems while drilling for oil and gas.

In the oil and gas industry, drilling mud is used to (1) to suspend cuttings to prevent it sagging at the drill bit during shutdown, (2) to transport it to the surface, (3) to cool and lubricate the drill bit, (4) to provide enough hydrostatics pressure to prevent fluids from formation enter to the well bore and (5) to form a thin filter cake to seal the damage formation.

One of the biggest problems encountered during drilling is when the smaller particles of the drilling fluid break through into the larger void spaces in the formation, which leads to lost circulation. Lost circulation can result in blow-outs, stuck pipe, lost rig time and the leasing of wells, costing millions of dollars.

Lost circulation materials (LCM) are drilling fluid additives that are designed to make sure that the drilling fluid circulates down the hole and returns to the surface for recirculation rather than being lost to the formation drilled.

There is a wide range of LCM that is currently being applied, depending on the viability of materials and loss rates - ranging from particles, flakes and cement gunk to chemical sealants. LCM selection is usually based on cost, nature of losses, types of drilling fluid being used and sometimes on the type of formations being drilled

Universiti Teknologi MARA researchers are investigating the properties of lemongrass to be used as LCM

These days, it is increasingly necessary to drill in ultra-deep waters, which entails working in high temperature and pressure conditions. Here Oil based mud (OBM) is the more prefered mediaum to use compared to water based mud.

Therefore, a laboratory study was carried out to investigate the effect of temperature on the performance of lemongrass with different sizes of LCM in oil based mud.

It was found that different temperatures and sizes have great effects on the lemongrass LCM in the oil based mud. The optimum temperature for lemongrass LCM is 275 degrees Fahrenhite with the sizes of 250 microns.

Based on the result, it shows that lemongrass is able to perform a good LCM in OBM based on filtrate volume and filter cake thickness. The thickness of the filter cake obtained was in the range of 2 to 25 mm which satisfies the requirement from industry.

The findings also discovered that the lemongrass with the size of 150 microns is the suitable material to be used as LCM to replace conventional LCM.

Nurul Aimi Ghazali
Faculty of Chemical Engineering,
University Teknologi MARA
Malaysia
Email: nurulaimi@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: UiTM circulation conditions fiber lemongrass fibers materials temperature

More articles from Materials Sciences:

nachricht Spin glass physics with trapped ions
30.05.2016 | ICFO-The Institute of Photonic Sciences

nachricht 3-D model reveals how invisible waves move materials within aquatic ecosystems
30.05.2016 | University of Waterloo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>