Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lemongrass fiber as lost circulation material in drilling fluid

18.08.2014

Universiti Teknologi MARA researchers are investigating the properties of lemongrass fibers to help prevent fluid circulation problems while drilling for oil and gas.

In the oil and gas industry, drilling mud is used to (1) to suspend cuttings to prevent it sagging at the drill bit during shutdown, (2) to transport it to the surface, (3) to cool and lubricate the drill bit, (4) to provide enough hydrostatics pressure to prevent fluids from formation enter to the well bore and (5) to form a thin filter cake to seal the damage formation.

One of the biggest problems encountered during drilling is when the smaller particles of the drilling fluid break through into the larger void spaces in the formation, which leads to lost circulation. Lost circulation can result in blow-outs, stuck pipe, lost rig time and the leasing of wells, costing millions of dollars.

Lost circulation materials (LCM) are drilling fluid additives that are designed to make sure that the drilling fluid circulates down the hole and returns to the surface for recirculation rather than being lost to the formation drilled.

There is a wide range of LCM that is currently being applied, depending on the viability of materials and loss rates - ranging from particles, flakes and cement gunk to chemical sealants. LCM selection is usually based on cost, nature of losses, types of drilling fluid being used and sometimes on the type of formations being drilled

Universiti Teknologi MARA researchers are investigating the properties of lemongrass to be used as LCM

These days, it is increasingly necessary to drill in ultra-deep waters, which entails working in high temperature and pressure conditions. Here Oil based mud (OBM) is the more prefered mediaum to use compared to water based mud.

Therefore, a laboratory study was carried out to investigate the effect of temperature on the performance of lemongrass with different sizes of LCM in oil based mud.

It was found that different temperatures and sizes have great effects on the lemongrass LCM in the oil based mud. The optimum temperature for lemongrass LCM is 275 degrees Fahrenhite with the sizes of 250 microns.

Based on the result, it shows that lemongrass is able to perform a good LCM in OBM based on filtrate volume and filter cake thickness. The thickness of the filter cake obtained was in the range of 2 to 25 mm which satisfies the requirement from industry.

The findings also discovered that the lemongrass with the size of 150 microns is the suitable material to be used as LCM to replace conventional LCM.

Nurul Aimi Ghazali
Faculty of Chemical Engineering,
University Teknologi MARA
Malaysia
Email: nurulaimi@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: UiTM circulation conditions fiber lemongrass fibers materials temperature

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>