Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lead islands in a sea of graphene magnetize the material of the future

15.12.2014

Researchers in Spain have discovered that if lead atoms are intercalated on a graphene sheet, a powerful magnetic field is generated by the interaction of the electrons' spin with their orbital movement.

This property could have implications in spintronics, an emerging technology promoted by the European Union to create advanced computational systems.


In the sea of graphene (over an iridium crystal), electrons' spin-orbit interaction is much lower than that created by intercalating a lead island.

Credit: IMDEA Nanoscience/UAM/ICMM-CSIC/UPV-EHU

Graphene is considered the material of the future due to its extraordinary optical and electronic mechanical properties, especially because it conducts electrons very quickly. However, it does not have magnetic properties, and thus no method has been found to manipulate these electrons or any of their properties to use it in new magnetoelectronic devices, although Spanish scientists have come upon a key.

Researchers from IMDEA Nanoscience, the Autonomous University of Madrid, the Madrid Institute of Materials Science (CSIC) and the University of the Basque Country describe in the journal Nature Physics this week how to create a powerful magnetic field using this new material.

The secret is to intercalate atoms or Pb islands below the sea of hexagons of carbon that make up graphene. This produces an enormous interaction between two electron characteristics: their spin - a small 'magnet' linked to their rotation - and their orbit, the movement they follow around the nucleus.

"This spin-orbit interaction is a million times more intense than that inherent to graphene, which is why we obtain revolutions that could have important uses, for example in data storage," explains Rodolfo Miranda, Director of IMDEA Nanoscience and head of the study.

To obtain this effect, the scientists laid a layer of lead on another of graphene, in turn grown over an iridium crystal. In this configuration the lead forms 'islands' below the graphene and the electrons of this two-dimensional material behave as if in the presence of a colossal 80-tesla magnetic field, which facilitates the selective control of the flow of spins.

Traffic control with two lanes

"And, what is most important, under these conditions certain electronic states are topologically protected; in other words, they are immune to defects, impurities or geometric disturbances," continues Miranda, who gives this example: "If we compare it to traffic, in a traditional spintronic material cars circulate along a single-lane road, which make collisions more likely, whilst with this new material we have traffic control with two spatially separate lanes, preventing crashes."

Spintronics is a new technology that uses electrons' magnetic spin to store information bits. It arose with the discovery of giant magnetoresistance, a finding which won Peter Grümberg and Albert Fert the Nobel Prize in Physics in 2007. It is an effect that causes great changes to the electric resistance of fine multi-layer materials and has led to the development of components as varied as the reader heads on hard disks or the sensors in airbags.

The first generation of spintronic or magnetoresistant devices was based on the effect magnetic materials have on electron spin. But a second generation is already up and running, and encompasses this new study, in which electrons' own spin-orbit interaction acts on them as if there were a real external magnetic field, even if there is not.

The use of graphene as an active component in spintronics is one of the fundamental aims of the large European Union project 'Graphene Flagship'. The scientists' final objective is to wilfully control the type of spin the electrons in this new material have in order to apply it to the electronic devices of the future.

References

Fabian Calleja, Héctor Ochoa, Manuela Garnica, Sara Barja, Juan Jesús Navarro, Andrés Black, Mikhail M. Otrokov, Evgueni V. Chulkov, Andrés Arnau, Amadeo L. Vázquez de Parga, Francisco Guinea, Rodolfo Miranda. "Spatial variation of a giant spin-orbit effect induces electron confinement in graphene on Pb islands". Nature Physics, 15 December 2014.

SINC | EurekAlert!
Further information:
http://www.fecyt.es/fecyt/home.do

Further reports about: Electrons European IMDEA Nanoscience Nature Physics graphene magnetic field materials physics spintronics

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>