Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lead islands in a sea of graphene magnetize the material of the future


Researchers in Spain have discovered that if lead atoms are intercalated on a graphene sheet, a powerful magnetic field is generated by the interaction of the electrons' spin with their orbital movement.

This property could have implications in spintronics, an emerging technology promoted by the European Union to create advanced computational systems.

In the sea of graphene (over an iridium crystal), electrons' spin-orbit interaction is much lower than that created by intercalating a lead island.


Graphene is considered the material of the future due to its extraordinary optical and electronic mechanical properties, especially because it conducts electrons very quickly. However, it does not have magnetic properties, and thus no method has been found to manipulate these electrons or any of their properties to use it in new magnetoelectronic devices, although Spanish scientists have come upon a key.

Researchers from IMDEA Nanoscience, the Autonomous University of Madrid, the Madrid Institute of Materials Science (CSIC) and the University of the Basque Country describe in the journal Nature Physics this week how to create a powerful magnetic field using this new material.

The secret is to intercalate atoms or Pb islands below the sea of hexagons of carbon that make up graphene. This produces an enormous interaction between two electron characteristics: their spin - a small 'magnet' linked to their rotation - and their orbit, the movement they follow around the nucleus.

"This spin-orbit interaction is a million times more intense than that inherent to graphene, which is why we obtain revolutions that could have important uses, for example in data storage," explains Rodolfo Miranda, Director of IMDEA Nanoscience and head of the study.

To obtain this effect, the scientists laid a layer of lead on another of graphene, in turn grown over an iridium crystal. In this configuration the lead forms 'islands' below the graphene and the electrons of this two-dimensional material behave as if in the presence of a colossal 80-tesla magnetic field, which facilitates the selective control of the flow of spins.

Traffic control with two lanes

"And, what is most important, under these conditions certain electronic states are topologically protected; in other words, they are immune to defects, impurities or geometric disturbances," continues Miranda, who gives this example: "If we compare it to traffic, in a traditional spintronic material cars circulate along a single-lane road, which make collisions more likely, whilst with this new material we have traffic control with two spatially separate lanes, preventing crashes."

Spintronics is a new technology that uses electrons' magnetic spin to store information bits. It arose with the discovery of giant magnetoresistance, a finding which won Peter Grümberg and Albert Fert the Nobel Prize in Physics in 2007. It is an effect that causes great changes to the electric resistance of fine multi-layer materials and has led to the development of components as varied as the reader heads on hard disks or the sensors in airbags.

The first generation of spintronic or magnetoresistant devices was based on the effect magnetic materials have on electron spin. But a second generation is already up and running, and encompasses this new study, in which electrons' own spin-orbit interaction acts on them as if there were a real external magnetic field, even if there is not.

The use of graphene as an active component in spintronics is one of the fundamental aims of the large European Union project 'Graphene Flagship'. The scientists' final objective is to wilfully control the type of spin the electrons in this new material have in order to apply it to the electronic devices of the future.


Fabian Calleja, Héctor Ochoa, Manuela Garnica, Sara Barja, Juan Jesús Navarro, Andrés Black, Mikhail M. Otrokov, Evgueni V. Chulkov, Andrés Arnau, Amadeo L. Vázquez de Parga, Francisco Guinea, Rodolfo Miranda. "Spatial variation of a giant spin-orbit effect induces electron confinement in graphene on Pb islands". Nature Physics, 15 December 2014.

SINC | EurekAlert!
Further information:

Further reports about: Electrons European IMDEA Nanoscience Nature Physics graphene magnetic field materials physics spintronics

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>