Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest 'green' packing material? Mushrooms

28.07.2010
Packing foam now entering the marketplace is engineered from mushrooms and agricultural waste

A new packing material that grows itself is now appearing in shipped products across the country.

The composite of inedible agricultural waste and mushroom roots is called Mycobond™, and its manufacture requires just one eighth the energy and one tenth the carbon dioxide of traditional foam packing material.

And unlike most foam substitutes, when no longer useful, it makes great compost in the garden.

The technology was the brainchild of two former Rensselaer Polytechnic Institute undergraduates, Gavin McIntyre and Eben Bayer, who founded Ecovative Design of Green Island, N.Y., to bring their idea into production.

"We don't manufacture materials, we grow them," says McIntyre. "We're converting agricultural byproducts into a higher-value product."

Because the feedstock is based on renewable resources, he adds, the material has an economic benefit as well: it is not prone to the price fluctuations common to synthetic materials derived from such sources as petroleum. "All of our raw materials are inherently renewable and they are literally waste streams," says McIntyre. "It's an open system based on biological materials."

With support from NSF, McIntyre and Bayer are developing a new, less energy-intensive method to sterilize their agricultural-waste starter material--a necessary step for enabling the mushroom fibers, called mycelia, to grow. McIntyre and Bayer are replacing a steam-heat process with a treatment made from cinnamon-bark oil, thyme oil, oregano oil and lemongrass oil.

The sterilization process, which kills any spores that could compete with Ecovative's mushrooms, is almost as effective as the autoclaving process used to disinfect medical instruments and will allow the Mycobond™ products to grow in the open air, instead of their current clean-room environment.

"The biological disinfection process simply emulates nature," says McIntyre, "in that it uses compounds that plants have evolved over centuries to inhibit microbial growth. The unintended result is that our production floor smells like a pizza shop."

Much of the manufacturing process is nearly energy-free, with the mycelia growing around and digesting agricultural starter material--such as cotton seed or wood fiber--in an environment that is both room-temperature and dark. Because the growth occurs within a molded plastic structure (which the producers customize for each application), no energy is required for shaping the products.

Once fully formed, each piece is heat-treated to stop the growth process and delivered to the customer--though with the new, easier, disinfection treatment, Bayer and McIntyre are hoping the entire process can be packaged as a kit, allowing shipping facilities, and even homeowners, to grow their own Mycobond™ materials.

Based on a preliminary assessment McIntyre and Bayer conducted under their Phase I NSF SBIR award, the improvements to the sterilization phase will reduce the energy of the entire manufacturing process to one fortieth of that required to create polymer foam.

"This project is compelling because it uses innovative technology to further improve Ecovative's value, while also providing the environmental benefits that NSF is looking for," said Ben Schrag, the NSF program officer who oversees Ecovative's Small Business Innovation Research (SBIR) award. "The traction that they have gotten with their early customers demonstrates how companies can build strong businesses around products whose primary competitive advantage lies in their sustainability."

In addition to the packaging product, called EcoCradle™, Ecovative has developed a home insulation product dubbed greensulate™. Comparable in effectiveness to foam insulation, it has the added benefit of being flame retardant.

Ecovative is already producing custom protective packaging products for several Fortune 500 companies, though they are leveraging the new disinfection process to produce turnkey systems that they plan to deploy to off-site customers and do-it-yourself homeowners by 2013.

In addition to NSF, Evocative has received support from the USDA Agricultural Research Service, the Environmental Protection Agency, and the New York State Energy Research and Development Authority.

Joshua A. Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>