Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser glass soldering for low-temperature, durably stable packaging of electronic components

10.03.2010
Electronic and electrical products have to meet a diverse range of increasingly exacting demands, including high integration density and the combination of various materials with specific functionality.

Hermetic packaging poses particular challenges for the production technology, which can no longer be met by conventional methods such as gluing and soldering. The Fraunhofer Institute for Laser Technology ILT has developed an innovative packaging process for microcomponents and electronic parts based on laser glass soldering, which is suitable for use in mass production and fulfils the stringent environmental regulations of the EU's RoHS Directive.

Precision products such as semiconductors, sensors or optical and medical system components contain highly sensitive electronic elements. In most cases they must not come into contact with water, oxygen and other elements and therefore have to be hermetically sealed. Gas-tight packaging of the complex interior poses a great challenge for the joining process in microcomponents.

High-temperature processes such as anodic bonding and glass frit bonding are widely used methods for hermetically sealing components made of silicon and glass. The heat needed for joining is introduced into the component by a kiln process at temperatures of 300 to 600°C. As the most temperature sensitive component determines the maximum temperature of the entire system, these two processes cannot be used for temperature-sensitive functional elements. They are, for example, unsuitable for encapsulating OLEDs because the functional organic layers would be destroyed at a temperature of even 100 °C.

At present temperature-labile components are usually glued, but long-time tests on semiconductors and OLEDs have shown that the durability of the glued connection is limited. Oxygen and moisture gradually penetrate the interior of the component and affect its function. The limited durability and the temperature sensitivity of glued connections are a problem, especially for components used in the medical sector, as they cannot withstand, for example, sterilization processes in autoclaves. Electronic components such as sensors in implants can often only be replaced by performing a surgical operation on the patient. The manufacturers of these and other precision components are therefore seeking a way of prolonging the durability of their products. As high-temperature and gluing processes do not meet the requirements for joining microelectronic components to various materials, manufacturers are looking for a reliable low-temperature process.

Laser-based soldering with glass solder materials offers a suitable solution. This is a relatively new joining technique which subjects the total component to only minimal thermal loading. Research scientists at the Fraunhofer ILT are currently developing the technique with the aim of introducing it soon into series production. In this joining method the solder consisting of a glass particle paste is first applied precisely to the cover of the component using a print mask. The solder is then pre-vitrified in a kiln at a temperature of 350 - 500 °C depending on the type of glass paste used, so that the binders in the paste evaporate. After the solder has cooled the electronic component is joined to the cover. A defined and locally limited temperature increase is achieved by scanning the solder seam with a laser beam. The rest of the component is not affected by this application of heat. Owing to the high scanning speed of up to 10,000 mm per second, the joining process is quasi-simultaneously controlled. The entire solder contour is evenly heated, the cover can sink into the liquid solder bath and is thus hermetically connected to the component. Compared with gluing, the laser-based method achieves a considerable increase in the durability of the entire microcomponent, and the permeability of liquids and gases is practically zero. What's more, the solder seam is completely free of bubbles and cracks. For the medical sector in particular this means a significant increase in safety. "A further advantage of laser-based glass soldering is that the solder seam is very narrow, measuring just 300-500 µm, whereas glued seams have a width of several millimeters," explains Heidrun Kind, project manager at the Fraunhofer ILT. "This fact becomes increasingly important with the advancing miniaturization of precision components. Wide glued seams on OLEDs for example are regarded as visual defects. On sensors used in implants they can change the entire component geometry detrimentally. In environmental terms, too, the technique has a bright future. We are now able to use completely lead-free solder, which means that our method meets the requirements of the EU's RoHS Directive for the minimization of hazardous substances in electrical and electronic components."

Thanks to the maximum flexibility provided with regard to component size and shape, the process is highly suitable for industrial series production. It can be used to seal microsystem components as well as to join large components measuring 200 x 200 mm2. In addition to glass/glass components, substrates with MAM or ITO layers as well as glass/silicon components can be hermetically connected to each other.

Contacts at the Fraunhofer ILT
If you have any questions our experts will be pleased to assist:
Dipl.-Ing. Heidrun Kind
Expert Group Ablation and Joining
Phone +49 241 8906-490
heidrun.kind@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Manager of Expert Group Ablation and Joining
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology Lasertechnik ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>