Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser glass soldering for low-temperature, durably stable packaging of electronic components

10.03.2010
Electronic and electrical products have to meet a diverse range of increasingly exacting demands, including high integration density and the combination of various materials with specific functionality.

Hermetic packaging poses particular challenges for the production technology, which can no longer be met by conventional methods such as gluing and soldering. The Fraunhofer Institute for Laser Technology ILT has developed an innovative packaging process for microcomponents and electronic parts based on laser glass soldering, which is suitable for use in mass production and fulfils the stringent environmental regulations of the EU's RoHS Directive.

Precision products such as semiconductors, sensors or optical and medical system components contain highly sensitive electronic elements. In most cases they must not come into contact with water, oxygen and other elements and therefore have to be hermetically sealed. Gas-tight packaging of the complex interior poses a great challenge for the joining process in microcomponents.

High-temperature processes such as anodic bonding and glass frit bonding are widely used methods for hermetically sealing components made of silicon and glass. The heat needed for joining is introduced into the component by a kiln process at temperatures of 300 to 600°C. As the most temperature sensitive component determines the maximum temperature of the entire system, these two processes cannot be used for temperature-sensitive functional elements. They are, for example, unsuitable for encapsulating OLEDs because the functional organic layers would be destroyed at a temperature of even 100 °C.

At present temperature-labile components are usually glued, but long-time tests on semiconductors and OLEDs have shown that the durability of the glued connection is limited. Oxygen and moisture gradually penetrate the interior of the component and affect its function. The limited durability and the temperature sensitivity of glued connections are a problem, especially for components used in the medical sector, as they cannot withstand, for example, sterilization processes in autoclaves. Electronic components such as sensors in implants can often only be replaced by performing a surgical operation on the patient. The manufacturers of these and other precision components are therefore seeking a way of prolonging the durability of their products. As high-temperature and gluing processes do not meet the requirements for joining microelectronic components to various materials, manufacturers are looking for a reliable low-temperature process.

Laser-based soldering with glass solder materials offers a suitable solution. This is a relatively new joining technique which subjects the total component to only minimal thermal loading. Research scientists at the Fraunhofer ILT are currently developing the technique with the aim of introducing it soon into series production. In this joining method the solder consisting of a glass particle paste is first applied precisely to the cover of the component using a print mask. The solder is then pre-vitrified in a kiln at a temperature of 350 - 500 °C depending on the type of glass paste used, so that the binders in the paste evaporate. After the solder has cooled the electronic component is joined to the cover. A defined and locally limited temperature increase is achieved by scanning the solder seam with a laser beam. The rest of the component is not affected by this application of heat. Owing to the high scanning speed of up to 10,000 mm per second, the joining process is quasi-simultaneously controlled. The entire solder contour is evenly heated, the cover can sink into the liquid solder bath and is thus hermetically connected to the component. Compared with gluing, the laser-based method achieves a considerable increase in the durability of the entire microcomponent, and the permeability of liquids and gases is practically zero. What's more, the solder seam is completely free of bubbles and cracks. For the medical sector in particular this means a significant increase in safety. "A further advantage of laser-based glass soldering is that the solder seam is very narrow, measuring just 300-500 µm, whereas glued seams have a width of several millimeters," explains Heidrun Kind, project manager at the Fraunhofer ILT. "This fact becomes increasingly important with the advancing miniaturization of precision components. Wide glued seams on OLEDs for example are regarded as visual defects. On sensors used in implants they can change the entire component geometry detrimentally. In environmental terms, too, the technique has a bright future. We are now able to use completely lead-free solder, which means that our method meets the requirements of the EU's RoHS Directive for the minimization of hazardous substances in electrical and electronic components."

Thanks to the maximum flexibility provided with regard to component size and shape, the process is highly suitable for industrial series production. It can be used to seal microsystem components as well as to join large components measuring 200 x 200 mm2. In addition to glass/glass components, substrates with MAM or ITO layers as well as glass/silicon components can be hermetically connected to each other.

Contacts at the Fraunhofer ILT
If you have any questions our experts will be pleased to assist:
Dipl.-Ing. Heidrun Kind
Expert Group Ablation and Joining
Phone +49 241 8906-490
heidrun.kind@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Manager of Expert Group Ablation and Joining
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology Lasertechnik ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>