Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large scale production of Edge-Functionalized Graphene Nanoplatelets (EFGnPs)

13.02.2013
Researchers from the Ulsan National Institute of Science and Technology (UNIST), South Korea have pioneered a simple, but efficient and eco-friendly way to produce Edge-selectively functionalized graphene nanoplatelets (EFGnPs) by dry ball milling graphite in the presence of various gases.
The electrocatalytic activity of heteroatom-doped carbon-based nanomaterials has become a growing interest in the past few years due to their potential applications for fuel cells and metal-air batteries.

Several approaches currently exist for the doping of heteroatoms into graphitic structure, but these suffer from high manufacturing costs and technical difficulties.
Researchers at Ulsan National Institute of Science and Technology (UNIST) have come up with a simple, but efficient and eco-friendly alternative which sees the production of edge-selectively functionalized graphene nanoplatelets (EFGnPs) via a dry ball milling graphite in the presence of various gases. The dry ball mill is effectively a type of grinder, traditionally use to grind ores, chemicals and other raw materials into fine powder. It can also be used on a atomic level, as is the case when producing EFGnPs.

Due to the versatility of mechanochemical reactions driven by ball milling, various functional groups could be introduced to the broken edges of graphene nanoplatelets (GnPs) in the presence of appropriate chemical vapors, liquids, or solids in the ball-mill crusher.

The mechanism of edge-selective functionalization in the ball-milling process involves the reaction between reactive carbon species generated by a mechanochemical cleavage of graphitic C-C bonds and gases in a sealed ball-mill crusher. The dormant active carbon species, which remain unreactive in the crusher, could be terminated by subsequent exposure to air moisture. As a result, some oxygenated groups, such as hydroxyl (-OH) and carboxylic acid (-COOH), can be introduced at the broken edges of the preformed EFGnPs with minimal basal plane distortion.

A scanning electron microscope (SEM) is used to demonstrate the mechanochemical cracking of a large grain sized piece of graphite into a small grain size of EFGnPs. Due to the reaction between the newly formed active carbon species at the broken edges of the GnPs and corresponding gases, the ball milling and subsequent workup procedures were found to increase the weight of all the resultant EFGnPs with respect to the graphite starting material. These results indicated that the mechanochemical functionalization of graphite was efficient. The resultant EFGnPs are active enough for the oxygen reduction reaction (ORR) in fuel cells, and hence they will make expensive platinum (Pt)-based electrocatalysts to take a back seat.

Jong-Beom Baek, professor and director of the Interdisciplinary School of Green Energy/Low-Dimensional Carbon Materials Center at UNIST commented:

“We have developed a simple, but versatile ball-milling process to efficiently exfoliate the pristine graphite directly into EFGnPs. Various microscopic and spectroscopic measurements were performed to confirm the reaction mechanisms for the edge functionalization of graphite by ball milling in the presence of corresponding gases and their superior slectrocatalytic activities of the ORR,” said Prof. Baek.

This research was funded by the Ministry of Education, Science and Technology (Minister Lee Ju-Ho) through the National Research Foundation of Korea (President Seung Jong Lee) and published in Journal of the American Chemical Society (Title: Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball-milling and their use as metal-free electrocatalysts for oxygen reduction reaction).

REFERENCE:

In-Yup Jeon, Hyun-Jung Choi, Sun-Min Jung, Jeong-Min Seo, Min-Jung Kim, Liming Dai, and Jong-Beom Baek 2013. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball-milling and their use as metal-free electrocatalysts for oxygen reduction reaction" Journal of the American Chemical Society, 135(4): 1386–1393 (direct link below)

Journal information
Journal of American Chemical Society
Funding information
the Ministry of Education, Science and Technology (Minister Lee Ju-Ho) through the National Research Foundation of Korea (President Seung Jong Lee)

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>