Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lack of industry links "keeping Indian nanotech small"

India's expanding nanotechnology research is not translating into market products due to weak links between Indian scientific institutes and industry, experts have cautioned. The problems were discussed at a gathering of India's top scientists and representatives of the Federation of Indian Chambers of Commerce and Industry working on nanotechnology in Delhi.

Other problems cited include an absence of information about groups working in the sector and the domestic industry's reluctance to manufacture large quantities of nanomaterials proven to have commercial application.

India has more than 30 industries and 50 institutes engaged in nanotech research and development, with most efforts focusing on chip design, nanomedicine and nanomaterials. Nanotechnology has potential uses in drug delivery, diagnostic kits, improved water filters and sensors, and reducing pollution from vehicles.

Since the launch of a US$250 million five-year national nanotech mission in 2007, India has seen a rise in the number of scientists working in the field and research publications, said V. S. Ramamurthy, former secretary of India's Department of Science and Technology and currently on the board of the Indian Institute of Technology in Delhi.

The national mission aims to make India a global hub by setting up clusters of research groups in the sector (see "India looks to nanotechnology to boost agriculture" ( and "Preparing for take-off: Indian Nanotechnology" (

But there has been no corresponding increase in nanotech products in the marketplace. India needs to work on turning its laboratory research findings into commercially viable products that are either globally competitive or locally relevant, said Ramamurthy. "We need to evolve synergies and strategies so that the strengths in the labs are converted into strengths in the marketplace," he said.

C. N. R. Rao, chairman of the Scientific Advisory Committee to India's Prime Minister, suggested Indian scientists and industry should work on 'hot' emerging technologies with tremendous potential, which are attracting the interest of researchers worldwide. These include use of nano-scale particles of graphene, a one atom thick layer of carbon molecules that form the basic structure of graphites. The material is one of the strongest known and has uses in microelectronics and tremendous capacity to absorb the greenhouse gas carbon dioxide.

Other technologies include 'nano' zinc oxide that can be used in lasers, transistors and photovoltaics, and gallium nitride, a chemical that has applications in making cheaper, longer-lasting bulbs and torches.

Rao also suggested India should work on 'nano' forms of currently known materials that can throw up exciting applications.

Delegates at the meeting also pointed out that India does not have a systematic information base on all scientists.

Ajay Sood, professor of physics at the Indian Institute of Science in Bangalore said, "An information map on interested industry and academics is very much needed; an information platform that is easily accessible and can be updated."

Quelle: Science and Development Network (SciDevNet)

| SciDevNet
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>