Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of industry links "keeping Indian nanotech small"

30.09.2008
India's expanding nanotechnology research is not translating into market products due to weak links between Indian scientific institutes and industry, experts have cautioned. The problems were discussed at a gathering of India's top scientists and representatives of the Federation of Indian Chambers of Commerce and Industry working on nanotechnology in Delhi.

Other problems cited include an absence of information about groups working in the sector and the domestic industry's reluctance to manufacture large quantities of nanomaterials proven to have commercial application.

India has more than 30 industries and 50 institutes engaged in nanotech research and development, with most efforts focusing on chip design, nanomedicine and nanomaterials. Nanotechnology has potential uses in drug delivery, diagnostic kits, improved water filters and sensors, and reducing pollution from vehicles.

Since the launch of a US$250 million five-year national nanotech mission in 2007, India has seen a rise in the number of scientists working in the field and research publications, said V. S. Ramamurthy, former secretary of India's Department of Science and Technology and currently on the board of the Indian Institute of Technology in Delhi.

The national mission aims to make India a global hub by setting up clusters of research groups in the sector (see "India looks to nanotechnology to boost agriculture" (www.scidev.net/en/news/india-looks-to-nanotechnology-to-boost-agriculture.html) and "Preparing for take-off: Indian Nanotechnology" (www.scidev.net/en/features/preparing-for-takeoff-indian-nanotechnology.html)).

But there has been no corresponding increase in nanotech products in the marketplace. India needs to work on turning its laboratory research findings into commercially viable products that are either globally competitive or locally relevant, said Ramamurthy. "We need to evolve synergies and strategies so that the strengths in the labs are converted into strengths in the marketplace," he said.

C. N. R. Rao, chairman of the Scientific Advisory Committee to India's Prime Minister, suggested Indian scientists and industry should work on 'hot' emerging technologies with tremendous potential, which are attracting the interest of researchers worldwide. These include use of nano-scale particles of graphene, a one atom thick layer of carbon molecules that form the basic structure of graphites. The material is one of the strongest known and has uses in microelectronics and tremendous capacity to absorb the greenhouse gas carbon dioxide.

Other technologies include 'nano' zinc oxide that can be used in lasers, transistors and photovoltaics, and gallium nitride, a chemical that has applications in making cheaper, longer-lasting bulbs and torches.

Rao also suggested India should work on 'nano' forms of currently known materials that can throw up exciting applications.

Delegates at the meeting also pointed out that India does not have a systematic information base on all scientists.

Ajay Sood, professor of physics at the Indian Institute of Science in Bangalore said, "An information map on interested industry and academics is very much needed; an information platform that is easily accessible and can be updated."

Quelle: Science and Development Network (SciDevNet)

| SciDevNet
Further information:
http://www.kooperation-international.de
http://www.scidev.net/en/news/lack-of-industry-links-keeping-indian-nanotech-sma.html

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>