Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


KorroPad: New rapid test for stainless steel surfaces


KorroPad is the name given to a new rapid colour test developed at BAM Federal Institute for Materials Research and Testing that enables stainless steel surfaces to be tested inexpensively and rapidly and, most importantly, also by non-specialists.

The pleasure of many designs or components made of stainless steel sometimes declines after a short time. Instead of a beautiful metallic shininess, discoloration and stains may develop after a few months. A few optimists like the emerging ‘leopard pattern’ or lively surface, but most customers simply complain because the appearance does not meet their expectations.

The unexpected discoloration and stains can easily be explained: the protective chromium oxide layer – also called a passive layer – fails to fully develop. However, the stainless steel owes its name solely to this layer. This layer cannot be seen, thus, its defects cannot be recognised. There are a number of reasons for the protective layer to become impaired. The problems are often caused as early as during processing. But faulty semi-finished products, which are currently manufactured world-wide, lead to nonconformities in the materials’ expected corrosion resistance.

The KorroPad test enables steel surfaces to be checked immediately after processing or in the delivery state. In this way, for example, handicraft businesses can protect themselves against costly warranty claims. And this not only involves visual problems since stainless steels are also the material of choice for the manufacture of anchors, dowels and bolts, hazardous material containers and complex chemical plants. These are usually installed in such a way that an error is not obvious at the time, which can lead to safety problems. Thus KorroPad also serves safety in engineering.

Three pads are needed for a test which provides a snapshot of the state of the passive layer. The pads are about the size of a five cent coin and are placed on the stainless steel surface. First, the surface is cleaned with acetone or alcohol and the pads are then lightly pressed onto the surface to be tested. They are removed with a spatula after 15 minutes and placed on a plastic support film where they can be scanned or photographed.

15 minutes is very fast compared to other methods which often take several hours or even weeks. KorroPad also offers another advantage: the component can be further processed after the test or installed at the customer’s premises because it is virtually non-destructive.

Water and a ferric ion indicator are the ingredients of the gel-like pads. If the protective chromium oxide layer is missing on the steel surface, the indicator reacts with the iron ions in the material. The outcome is that the indicator changes its colour and blue dots appear on the slightly yellow pads. Each point indicates a spot on the steel surface where the protective passive layer was not able to develop.

Stainless steels consist of at least twelve percent chromium. The protective layer on the surface needs oxygen and water (from humidity) and a clean, bare metallic surface to be able to develop. The passive layer then seals the surface. If the protective layer cannot be formed all over the surface, corrosion occurs.

"KorroPad helps people help themselves," says Andreas Burkert who, together with Jens Lehmann, has developed the test at BAM. Visually the surfaces always look blank at the beginning. But do the components really provide what the material’s name promises in practice? Many factors play a crucial role: How has the surface been processed? How have the weld seams been treated? Are the alloying elements evenly distributed? Burkert continues: "It is like baking a cake: The ingredients alone are not enough! The dough needs to be stirred properly and the subsequent heat treatment in an oven must be at the right temperature over the right time."

Meanwhile, some companies have already used KorroPad. The quick method is also included in the teaching curriculum in vocational schools and at universities. KorroPad visualises material properties that are otherwise hidden to the human eye. And KorroPad shows students how important it is to adhere to the rules of processing. Because standards alone will not lead to a safe technical application, what counts is what actually has been implemented in practice.

Pads can be ordered via BAM’s webshop. Of course, end users can also order the test itself if needed. 100 pieces cost 390 euros, smaller packages will also soon be offered due to numerous requests. A test with three pads costs about 12 euros. The process is so simple that even laymen can perform it. A private developer can quickly and inexpensively check to see if his new stainless steel railings are of flawless quality.

The project 17136 N/1 of the Research Association GfKORR e.V. was funded by the Federal Ministry for Economic Affairs and Energy via AiF within the Industrial Research Promotion Programme (IGF) based on the German Bundestag’s decision.

Dipl.-Ing. Jens Lehmann
Division 6 Materials Protection and Surface Technologies

BAM is a senior scientific and technical Federal Institute with responsibility to the Federal Ministry for Economic Affairs and Energy (BMWi).

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: BAM Economic Energy Materialforschung ions processing surfaces

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>