Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

KorroPad: New rapid test for stainless steel surfaces

15.04.2014

KorroPad is the name given to a new rapid colour test developed at BAM Federal Institute for Materials Research and Testing that enables stainless steel surfaces to be tested inexpensively and rapidly and, most importantly, also by non-specialists.

The pleasure of many designs or components made of stainless steel sometimes declines after a short time. Instead of a beautiful metallic shininess, discoloration and stains may develop after a few months. A few optimists like the emerging ‘leopard pattern’ or lively surface, but most customers simply complain because the appearance does not meet their expectations.

The unexpected discoloration and stains can easily be explained: the protective chromium oxide layer – also called a passive layer – fails to fully develop. However, the stainless steel owes its name solely to this layer. This layer cannot be seen, thus, its defects cannot be recognised. There are a number of reasons for the protective layer to become impaired. The problems are often caused as early as during processing. But faulty semi-finished products, which are currently manufactured world-wide, lead to nonconformities in the materials’ expected corrosion resistance.

The KorroPad test enables steel surfaces to be checked immediately after processing or in the delivery state. In this way, for example, handicraft businesses can protect themselves against costly warranty claims. And this not only involves visual problems since stainless steels are also the material of choice for the manufacture of anchors, dowels and bolts, hazardous material containers and complex chemical plants. These are usually installed in such a way that an error is not obvious at the time, which can lead to safety problems. Thus KorroPad also serves safety in engineering.

Three pads are needed for a test which provides a snapshot of the state of the passive layer. The pads are about the size of a five cent coin and are placed on the stainless steel surface. First, the surface is cleaned with acetone or alcohol and the pads are then lightly pressed onto the surface to be tested. They are removed with a spatula after 15 minutes and placed on a plastic support film where they can be scanned or photographed.

15 minutes is very fast compared to other methods which often take several hours or even weeks. KorroPad also offers another advantage: the component can be further processed after the test or installed at the customer’s premises because it is virtually non-destructive.

Water and a ferric ion indicator are the ingredients of the gel-like pads. If the protective chromium oxide layer is missing on the steel surface, the indicator reacts with the iron ions in the material. The outcome is that the indicator changes its colour and blue dots appear on the slightly yellow pads. Each point indicates a spot on the steel surface where the protective passive layer was not able to develop.

Stainless steels consist of at least twelve percent chromium. The protective layer on the surface needs oxygen and water (from humidity) and a clean, bare metallic surface to be able to develop. The passive layer then seals the surface. If the protective layer cannot be formed all over the surface, corrosion occurs.

"KorroPad helps people help themselves," says Andreas Burkert who, together with Jens Lehmann, has developed the test at BAM. Visually the surfaces always look blank at the beginning. But do the components really provide what the material’s name promises in practice? Many factors play a crucial role: How has the surface been processed? How have the weld seams been treated? Are the alloying elements evenly distributed? Burkert continues: "It is like baking a cake: The ingredients alone are not enough! The dough needs to be stirred properly and the subsequent heat treatment in an oven must be at the right temperature over the right time."

Meanwhile, some companies have already used KorroPad. The quick method is also included in the teaching curriculum in vocational schools and at universities. KorroPad visualises material properties that are otherwise hidden to the human eye. And KorroPad shows students how important it is to adhere to the rules of processing. Because standards alone will not lead to a safe technical application, what counts is what actually has been implemented in practice.

Pads can be ordered via BAM’s webshop. Of course, end users can also order the test itself if needed. 100 pieces cost 390 euros, smaller packages will also soon be offered due to numerous requests. A test with three pads costs about 12 euros. The process is so simple that even laymen can perform it. A private developer can quickly and inexpensively check to see if his new stainless steel railings are of flawless quality.

The project 17136 N/1 of the Research Association GfKORR e.V. was funded by the Federal Ministry for Economic Affairs and Energy via AiF within the Industrial Research Promotion Programme (IGF) based on the German Bundestag’s decision.

Contact:
Dipl.-Ing. Jens Lehmann
Division 6 Materials Protection and Surface Technologies
Email: Jens.Lehmann@bam.de

BAM is a senior scientific and technical Federal Institute with responsibility to the Federal Ministry for Economic Affairs and Energy (BMWi).

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:
http://www.bam.de

Further reports about: BAM Economic Energy Materialforschung ions processing surfaces

More articles from Materials Sciences:

nachricht OSU researchers prove magnetism can control heat, sound
29.05.2015 | Ohio Supercomputer Center

nachricht Engineering phase changes in nanoparticle arrays
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>