Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

KorroPad: New rapid test for stainless steel surfaces

15.04.2014

KorroPad is the name given to a new rapid colour test developed at BAM Federal Institute for Materials Research and Testing that enables stainless steel surfaces to be tested inexpensively and rapidly and, most importantly, also by non-specialists.

The pleasure of many designs or components made of stainless steel sometimes declines after a short time. Instead of a beautiful metallic shininess, discoloration and stains may develop after a few months. A few optimists like the emerging ‘leopard pattern’ or lively surface, but most customers simply complain because the appearance does not meet their expectations.

The unexpected discoloration and stains can easily be explained: the protective chromium oxide layer – also called a passive layer – fails to fully develop. However, the stainless steel owes its name solely to this layer. This layer cannot be seen, thus, its defects cannot be recognised. There are a number of reasons for the protective layer to become impaired. The problems are often caused as early as during processing. But faulty semi-finished products, which are currently manufactured world-wide, lead to nonconformities in the materials’ expected corrosion resistance.

The KorroPad test enables steel surfaces to be checked immediately after processing or in the delivery state. In this way, for example, handicraft businesses can protect themselves against costly warranty claims. And this not only involves visual problems since stainless steels are also the material of choice for the manufacture of anchors, dowels and bolts, hazardous material containers and complex chemical plants. These are usually installed in such a way that an error is not obvious at the time, which can lead to safety problems. Thus KorroPad also serves safety in engineering.

Three pads are needed for a test which provides a snapshot of the state of the passive layer. The pads are about the size of a five cent coin and are placed on the stainless steel surface. First, the surface is cleaned with acetone or alcohol and the pads are then lightly pressed onto the surface to be tested. They are removed with a spatula after 15 minutes and placed on a plastic support film where they can be scanned or photographed.

15 minutes is very fast compared to other methods which often take several hours or even weeks. KorroPad also offers another advantage: the component can be further processed after the test or installed at the customer’s premises because it is virtually non-destructive.

Water and a ferric ion indicator are the ingredients of the gel-like pads. If the protective chromium oxide layer is missing on the steel surface, the indicator reacts with the iron ions in the material. The outcome is that the indicator changes its colour and blue dots appear on the slightly yellow pads. Each point indicates a spot on the steel surface where the protective passive layer was not able to develop.

Stainless steels consist of at least twelve percent chromium. The protective layer on the surface needs oxygen and water (from humidity) and a clean, bare metallic surface to be able to develop. The passive layer then seals the surface. If the protective layer cannot be formed all over the surface, corrosion occurs.

"KorroPad helps people help themselves," says Andreas Burkert who, together with Jens Lehmann, has developed the test at BAM. Visually the surfaces always look blank at the beginning. But do the components really provide what the material’s name promises in practice? Many factors play a crucial role: How has the surface been processed? How have the weld seams been treated? Are the alloying elements evenly distributed? Burkert continues: "It is like baking a cake: The ingredients alone are not enough! The dough needs to be stirred properly and the subsequent heat treatment in an oven must be at the right temperature over the right time."

Meanwhile, some companies have already used KorroPad. The quick method is also included in the teaching curriculum in vocational schools and at universities. KorroPad visualises material properties that are otherwise hidden to the human eye. And KorroPad shows students how important it is to adhere to the rules of processing. Because standards alone will not lead to a safe technical application, what counts is what actually has been implemented in practice.

Pads can be ordered via BAM’s webshop. Of course, end users can also order the test itself if needed. 100 pieces cost 390 euros, smaller packages will also soon be offered due to numerous requests. A test with three pads costs about 12 euros. The process is so simple that even laymen can perform it. A private developer can quickly and inexpensively check to see if his new stainless steel railings are of flawless quality.

The project 17136 N/1 of the Research Association GfKORR e.V. was funded by the Federal Ministry for Economic Affairs and Energy via AiF within the Industrial Research Promotion Programme (IGF) based on the German Bundestag’s decision.

Contact:
Dipl.-Ing. Jens Lehmann
Division 6 Materials Protection and Surface Technologies
Email: Jens.Lehmann@bam.de

BAM is a senior scientific and technical Federal Institute with responsibility to the Federal Ministry for Economic Affairs and Energy (BMWi).

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:
http://www.bam.de

Further reports about: BAM Economic Energy Materialforschung ions processing surfaces

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>