Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping cool by layering up

14.02.2014
Nanoparticles with a core–shell structure can minimize the overheating of cells during bioimaging experiments

Upconversion nanoparticles — new types of luminescent nanomaterials that release high-energy photons after laser light stimulation — can penetrate deeper into tissue and are more photochemically stable than conventional bioimaging agents, such as quantum dots and organic dyes.

Luminescent nanocrystals doped or impregnated with small amounts of rare-earth ytterbium (Yb) ions are particularly effective at photon upconversion. The specific lasers used to excite Yb dopants, however, can also heat water molecules in biological samples causing cell death or tissue damage.

Now, Xiaogang Liu from the A*STAR Institute of Materials Research and Engineering in Singapore and co-workers have synthesized a rare-earth-doped nanocrystal that can be excited at wavelengths within a safer ‘biological window’, thanks to a layered, core–shell design1.

Luminescent nanocrystals require ‘sensitizer’ components to absorb photons and transfer energy to activator sites, which emit the desired light radiation. Liu and co-workers investigated a different rare-earth dopant, neodymium (Nd), which absorbs the short-wavelength laser light that excites water molecules, thus avoiding overheating effects. Unfortunately, Nd can be doped into nanocrystals only at very low concentrations before cross-interactions with activators begin to extinguish the luminescence. This makes Nd-doped nanoparticles weak emitters compared to Yb-based biomarkers.

To resolve this problem, the researchers produced spherical nanoparticles containing layers with starkly different concentrations of Nd ions. They doped small amounts of Nd, Yb, and activator ions into nanocrystals of sodium yttrium fluoride (NaYF4), a material with a strong upconversion efficiency. They then synthesized a shell layer around the low-doped core containing a significantly higher Nd dopant concentration of 20 per cent. In this arrangement, the shell layer effectively harvests light and then transfers energy to the core, where low sensitizer concentrations minimize luminescence reduction.

The experiments revealed that the core–shell design dramatically improved the nanocrystals’ bioimaging capabilities — the new material had better light-harvesting capabilities than nanoparticles doped with pure Nd or Yb and achieved emission intensities seven times higher than pure NaYF4. Mechanistic studies showed that energy transfer between Nd and Yb ions in the nanoparticle core was key to overcoming the limitations of low dopant concentrations.

Next, the team tested their new materials by imaging an array of cervical cancer cells. While typical laser irradiation for Yb-doped biomarkers killed the cells within five minutes, the shorter wavelengths used for Nd-doped core–shell nanoparticles kept the cells viable over the same time.

“We plan to further improve the upconversion efficiency of our nanoparticles and use them for both bioimaging and drug delivery,” says Liu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Xie, X., Gao, N., Deng, R., Sun, Q., Xu, Q.-H. & Liu, X. Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. Journal of the American Chemical Society 135, 12608–12611 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>