Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping cool by layering up

14.02.2014
Nanoparticles with a core–shell structure can minimize the overheating of cells during bioimaging experiments

Upconversion nanoparticles — new types of luminescent nanomaterials that release high-energy photons after laser light stimulation — can penetrate deeper into tissue and are more photochemically stable than conventional bioimaging agents, such as quantum dots and organic dyes.

Luminescent nanocrystals doped or impregnated with small amounts of rare-earth ytterbium (Yb) ions are particularly effective at photon upconversion. The specific lasers used to excite Yb dopants, however, can also heat water molecules in biological samples causing cell death or tissue damage.

Now, Xiaogang Liu from the A*STAR Institute of Materials Research and Engineering in Singapore and co-workers have synthesized a rare-earth-doped nanocrystal that can be excited at wavelengths within a safer ‘biological window’, thanks to a layered, core–shell design1.

Luminescent nanocrystals require ‘sensitizer’ components to absorb photons and transfer energy to activator sites, which emit the desired light radiation. Liu and co-workers investigated a different rare-earth dopant, neodymium (Nd), which absorbs the short-wavelength laser light that excites water molecules, thus avoiding overheating effects. Unfortunately, Nd can be doped into nanocrystals only at very low concentrations before cross-interactions with activators begin to extinguish the luminescence. This makes Nd-doped nanoparticles weak emitters compared to Yb-based biomarkers.

To resolve this problem, the researchers produced spherical nanoparticles containing layers with starkly different concentrations of Nd ions. They doped small amounts of Nd, Yb, and activator ions into nanocrystals of sodium yttrium fluoride (NaYF4), a material with a strong upconversion efficiency. They then synthesized a shell layer around the low-doped core containing a significantly higher Nd dopant concentration of 20 per cent. In this arrangement, the shell layer effectively harvests light and then transfers energy to the core, where low sensitizer concentrations minimize luminescence reduction.

The experiments revealed that the core–shell design dramatically improved the nanocrystals’ bioimaging capabilities — the new material had better light-harvesting capabilities than nanoparticles doped with pure Nd or Yb and achieved emission intensities seven times higher than pure NaYF4. Mechanistic studies showed that energy transfer between Nd and Yb ions in the nanoparticle core was key to overcoming the limitations of low dopant concentrations.

Next, the team tested their new materials by imaging an array of cervical cancer cells. While typical laser irradiation for Yb-doped biomarkers killed the cells within five minutes, the shorter wavelengths used for Nd-doped core–shell nanoparticles kept the cells viable over the same time.

“We plan to further improve the upconversion efficiency of our nanoparticles and use them for both bioimaging and drug delivery,” says Liu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Xie, X., Gao, N., Deng, R., Sun, Q., Xu, Q.-H. & Liu, X. Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. Journal of the American Chemical Society 135, 12608–12611 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>