Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab Researcher Developing New Computing Approach to Materials Science

12.09.2012
Krishna Rajan of Iowa State University and the Ames Laboratory thinks there’s more to materials informatics than plotting a thick cloud of colorful data points.

As he sees it, managing computing tools to discover new materials involves harnessing the key characteristics of data: volume, velocity, variety and veracity (the four V’s).

Lately, though, “the focus is only on volume,” said Rajan, Iowa State’s Wilkinson Professor of Interdisciplinary Engineering, director of the university’s Institute for Combinatorial Discovery and director of the international Combinatorial Sciences and Materials Informatics Collaboratory. Rajan is also an associate of the U.S. Department of Energy’s Ames Laboratory. “The focus is on more and more data. Data doesn’t make you smarter. What you want is knowledge.”

And so Rajan’s research team is developing statistical learning techniques to research and develop new materials. A 2011 paper published by the Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences describes how the process helped researchers improve piezoelectrics, materials that generate electricity when they’re bent. (Rajan is lead author of the paper.) Another 2011 paper published by Nature described using the same tools to design vaccine-delivery materials that mimic pathogens and enhance the body’s immune response. (Balaji Narasimhan, associate dean for research at Iowa State’s College of Engineering and the Vlasta Klima Balloun Professor of Engineering, is lead author of the paper.)

A 2012 news story in Science by Robert F. Service also contrasts Rajan’s approach with studies that have computed the properties of tens of thousands of potential new battery materials.

“Our approach requires the need to carefully establish a dataset of descriptors on which we directly apply statistical learning tools,” says the Proceedings paper (co-authored by Prasanna Balachandran, an Iowa State post-doctoral research associate; and Scott Broderick, an Iowa State research assistant professor). “One of the arguments we are trying to put forward in this paper is that although the potential number of variables can in fact be large, data dimensionality reduction and information theoretic techniques can help reduce it to a manageable number.”

Rajan likens the process to cooking the perfect spaghetti sauce. Rather than starting with every ingredient in the grocery store, why not start with the most important ingredients? Maybe with the tomatoes and the salt?

“Then how much salt and how many tomatoes?” Rajan said. “Depending on how they’re combined, you get different results. That’s the logic of this.”

The way to start, Rajan said, is to develop some rules of thumb about the material you’re trying to build. Once the most important design rules are set, computing power can be used to search through libraries of compounds and identify promising solutions.

“It’s not that we need more data,” Rajan said. “We need the right data.”

Rajan calls his approach efficient, robust and effective. He says it’s all based on data mining, information theory and statistical learning concepts. He also says it can be readily applied to different problems in various disciplines.

Rajan has used his ideas to help Iowa State researchers advance their work in agronomy, biofuels, climate studies and genomics. His work has been supported by the National Science Foundation, the Department of Defense and Iowa State University.

Matt Liebman, Iowa State’s Henry A. Wallace Endowed Chair for Sustainable Agriculture

and a professor of agronomy, has worked with Rajan to study how variables such as farming practices, soil type and climate affect the availability of nitrogen in crops such as corn. He said Rajan has been able to take large data sets, sort the useful information from the less relevant noise and identify influential variables and relationships.

“Given the complexity of the world of soils, plants and climate, that’s a nice skill set to have as we develop this effort,” Liebman said. “He has an approach that nobody in the field I normally work with has. This is a good example of cross-fertilization among disciplines.”

Rajan and other researchers will discuss their data-driven methods during the first International Conference and Summer School in Molecular and Materials Informatics next February in Melbourne, Australia. The conference is sponsored by the Commonwealth Scientific and Industrial Research Organisation (Australia’s national science agency) and Iowa State. Rajan is one of five members of the conference organizing committee.

The conference will cover methods for the rapid discovery of novel materials, data management, visualization of materials data and other topics in materials and computational sciences.

Rajan is patient and thoughtful when explaining his techniques. He said it’s all part of helping the materials science community understand his path toward materials informatics.

“Part of my job is building that community,” he said. “And the community is growing.”

Contacts:
Krishna Rajan, Materials Science and Engineering, Ames Laboratory, 515-294-2670, krajan@iastate.edu

Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Krishna Rajan | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Materials Sciences:

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>