Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Interface Superconductivity Withstands Variations in Atomic Configuration

Superconductors carry electricity with zero loss, but that perfect performance only occurs at temperatures hundreds of degrees below zero.

Warmed beyond those frigid conditions, the materials cross a critical temperature threshold and the superconductivity breaks down. But high-temperature superconductors (HTS)—warmer, but still subzero—may have untapped potential because their underlying mechanism remains a mystery.

Unlocking that unknown HTS source and engineering new superconductor configurations could drive that critical temperature high enough to revolutionize energy technology.

Now, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered an unexpected and anomalous pattern in the behavior of one high-performing class of HTS materials. In the new frontier of interface physics, two non-conducting materials can be layered to produce HTS behavior, with tantalizing and mystifying results. Testing a sample set of unprecedented size—more than 800 distinct, custom-made materials—the researchers found that the critical temperature for superconductivity remained constant across a wide range of atomic compositions.

“Theory predicted that the critical temperature in these interface samples would depend strongly on the electron content, but we saw no such dependence,” said Brookhaven physicist Ivan Bozovic, lead investigator on the new study published online August 4, 2013, in the journal Nature Materials. “We are exploring uncharted territory with unprecedented precision.”

Interface Emergence

Scientists can tweak the average number of electrons present in HTS films—called the doping level or carrier density—to optimize performance and explore the poorly understood phenomenon. The lanthanum, strontium, copper, and oxygen (LSCO) films used in this study change based on that doping level, transforming into under-doped insulator, a well doped superconductor, or an over-doped and non-superconducting metal. Much HTS research is dedicated to exploring the “just right” regime in the middle, but the ends of the spectrum hold considerable potential.

“Years ago, we discovered something truly remarkable at the interface between an LSCO insulator and an over-doped metal,” Bozovic said. “An unpredicted superconductivity emerged with a significantly enhanced critical temperature of more than 50 Kelvin.”

That temperature may be frosty (-370 degrees Fahrenheit), but the interface threshold is downright balmy compared to traditional superconductors and even 25 percent warmer than single-phase LSCO materials. Faced with this promising puzzle, the Brookhaven Lab team set out to test the many possible atomic configurations of LSCO interface superconductors.

Dope Elements

To map the relatively simple phase diagram of water—its journey from solid ice to gaseous vapor—the temperature must be incrementally increased. Leaping up by 10 degrees, for example, would leave considerable gaps and reveal very little about the exact phase transitions or how to harness them.

“To pinpoint the parameters of interface HTS, which is characterized by quantum phase transitions rather than thermal, we tuned the carrier density,” Bozovic said. “So unlike the simple application of heat, we had to alter the atomic composition of our samples.”

Without confirmed theories on interface superconductivity to guide design, each electron configuration must be synthesized and directly tested. And to make matters even more challenging, the Brookhaven collaboration needed hundreds of these precisely tailored LSCO samples.

Critical Pixels

“When studying complex materials, one needs robust statistics to identify trends—finding what is ubiquitous or intrinsic and filtering out the random and irrelevant,” Bozovic said. “So we fabricated more than 800 samples, each one almost atomically perfect, with subtle changes in the doping level.”

To accomplish this feat, the scientists used a custom-designed atomic layer-by-layer molecular beam epitaxy system (ALL-MBE) at Brookhaven Lab. The MBE group, which Bozovic leads, grew the thin LSCO films inside strictly controlled vacuum chambers. They then lithographically patterned the films—a bit like micrometer-scale printing—into an array of distinct pixels, each with a slightly different chemical composition. The researchers then measured the flow of current against the related doping levels in each pixel to chart the rise and fall of HTS.

“Our technique accelerated the sample testing process by 30 times or more,” Bozovic said. “More importantly, we could vary the doping level in steps one hundred times smaller than in standard methods.”

To the surprise of the Brookhaven scientists, the critical temperature for interface superconductivity in each of the 800 samples stayed constant at about 40 Kelvin. The doping level, even at the optimum levels predicted by theoretical models, did not appear to shift the electro-chemical potential of the HTS materials.

“The results pose a new challenge to HTS theories,” Bozovic said. “This study exemplifies the rich puzzle of interface physics and the other new discoveries that can be made through advanced experimentation.”

Additional collaborators on the research include Jie Wu, Oshiri Pelleg, Anthony Bollinger, Yujie Sun, all of Brookhaven Lab, Mihajlo Vanevic and Zoran Radovic of University of Belgrade, Serbia, and Gregory Boebinger of the National High Magnetic Field Laboratory.

The research was funded by the DOE’s Office of Science, the Serbian Ministry of Science and Education, and the National Science Foundation.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Justin Eure | Newswise
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>