Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent Structural Elements – Support Frames, Adaptive Engine Hoods And More To Come

02.09.2009
Weather conditions such as wind and snow loads can cause failure and collapse of supporting structures in roofs and similar constructions.

Based on new hybrid intelligent construction elements (HICE), researchers at the University of Stuttgart have developed a shell structure which is able to adapt to changing environmental conditions.

In a further step, the scientists will now use their knowledge to develop machines from these new structural elements which will also be able to react to their environments and adapt to given conditions. According to experts, this development may eventually lead to a significant acceleration of entire construction processes in mechanical, electrical and control engineering.

A research group of six engineers from different fields such as civil, aerospace, mechanical and process engineering is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) with a grant of 1.858 m € assigned for the first three years of a six-year project. The research group has started to operate in June.

The structural elements (e.g. shafts, levers, tractive or surface elements) are provided with integrated sensors, actuators and control elements. Light-weight and wear-resistant materials increase their functionality. Within the course of three years, the scientists from Stuttgart hope to assemble six newly-developed HICEs (membrane shells, adaptive cover elements, tile coating elements, inflexible force transmission elements, hybrid rope elements, bearing and lever elements) into a large-scale demonstrator shell structure measuring five square metres, which will combine all of the HICEs’ functionalities. The adaptive shell structure will be translucent and much lighter than conventional supporting structures. If a change in environmental factors such as wind load, wind direction or snow load occurs, the structure shall be able to dissipate strain autonomously and adaptively via levers, ties and shell elements in order to prevent failure. The demonstrator will be exhibited by the University of Stuttgart.

Portability to all engineering disciplines

In a second phase of the project, the participating researchers will try to show by means of further constructions that HICEs can be applied in all engineering disciplines. By way of example, a hybrid engine bonnet shall be developed which may be combined with state-of-the-art “active” bonnets. This could improve pedestrian safety significantly by preventing severe injuries in case of a collision with this type of bonnet: Standard active bonnets are able to report the clash via additional sensors to an electronic control device which then prompts the rear part of the bonnet to be lifted upwards via a lever structure. This creates a protective distance between the accident victim and the hard engine parts beneath the bonnet. An intelligent hybrid engine bonnet would additionally create a specific deformation of the bonnet in reaction to the parameters of the actual collision. Based on new materials, the bonnet shall be able to soften or harden relevant areas of its structure autonomously in order to prevent injuries as far as possible.

In addition, demonstrators for the application of HICEs in shaft-to-collar connections and machine enclosures will be developed.

The participating institutions are the Institutes of Mechanical Handling and Logistics, of Construction Technology and Technical Design, of Textile and Process Engineering, of Aircraft Design, of Design and Construction and of Metal Forming Technology. “Within six years, the research group will have developed an entirely new class of hybrid intelligent construction elements together with its respective constructional and computational methods. We will have reached a new level of systems integration”, says research group spokesman Prof. Karl-Heinz Wehking.

Ursula Zitzler | alfa
Further information:
http://www.uni-stuttgart.de
http://www.uni-stuttgart.de/ift/

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>