Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent Protective Clothing for High-Output Lasers

07.06.2013
In an EU project under the leadership of the Laser Zentrum Hannover e.V. (LZH), passive and active protective systems for jackets, trousers, aprons and gloves are being developed. This clothing offers effective protection against laser radiation with output densities of up to 20 Megawatts per square meter.
Protective professional clothing for firefighters, for welders or for chemists is readily available on the market. Despite the wide use of lasers in industry and research, there is currently no suitable protective clothing for the user, and when it comes to hazards from intensive laser radiation, only suitable protective laser eyewear has been classified and certified.

It is also important to have safety clothing to protect the skin, especially for the increasing number of cutting and welding applications with hand-guided laser systems. Operators are often in the directly next to the interaction zone between the laser beam and the materials to be processed, and often high-power lasers are in use. Under unfavorable conditions, for example when highly reflective surfaces are being processsed, the laser beam may be quickly deflected towards the user, causing severe skin burns. Also, near infrared laser radiation may penetrate into deeper tissue, and damage blood vessels and other biological tissue.

Therefore, the laser protective clothing developed within the framework of the EU “PROSYS” project is pursuing two strategies. First, researchers have designed a passive system with multi-layer technical textiles. The top layer has a special coating which diffusely reflects the laser radiation as much as possible. Radiation which may penetrate this first layer is then evenly spread out by the middle layer. Any residual heat, at least for a limited amount of time, which enters the energy barrier of the inner layer, may trigger a pain sensation. “This is intentional. Users should notice that they are being exposed to hazardous radiation, so they have the chance to withdraw their hand or arm,” explains Michael Hustedt, Head of the Safety Group at the LZH, and coordinator of the PROSYS project. Normal reaction time is up to 4 seconds, and the passive system can protect users for output densities up to 900 kW/m2, making this protective clothing 20 times more effective than what is presently available on the market.

The effectivity of the protective clothing can be even further improved by integrating an active system, which uses sensors embedded in the different layers. If the sensors are damaged by radiation, they send an electrical signal to the laser in less than 100 ms, and the laser is automatically shut off. The operators’ movement is not impaired, since the active system uses a wireless communication system between the safety transmitter and the receiver for the laser. Since the complete shut-down of the laser may take approximately 80 milliseconds, a combination of the active sensors and the passive protection layers makes sense. This system offers protection against output densities of up to 20 MW/m2.

The international consortium, which is composed of three research institutes, nine SMEs and one large enterprise, has developed prototypes of the protective clothing, which have been presented at different industrial fairs this year (e.g. Hannover Messe, LASER World of Photonics). Plans are being made for launching the products on the market soon.

Further developmental work will be, above all, concerned with improving the active systems, making them even more robust and flexible, without losing their protective functions. Practical tests in an industrial setting should provide further information for improving ergonomics and wearing comfort of the protective clothing, in order to achieve high user acceptance. The focus of this work is, for example, on reducing the weight of the material and improving the haptic characteristics of the gloves.

The research project PROSYS-Laser was supported by the European Union within the 7th Research Framework Programme (project number NMP2-SE-2009-229165). The partners of the LZH are the Centre Suisse d´Electronique et de Microtechnique SA and the Sächsische Textilforschungsinstitut e.V., as well as the enterprises CIM-mes Projekt sp. z o.o., Trans-Textil GmbH, TTI Technische Textilien International GmbH, JUTEC GmbH, Grado Zero Espace S.r.l., Smartex S.r.l., TDV Industries, Promat International NV, Laser on demand GmbH and Clean-Lasersysteme GmbH.
Contact:
Business Development & Communications Department
Michael Botts
Public Relations
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/en/publications/pressreleases/2013/prosys

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>