Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent Protective Clothing for High-Output Lasers

In an EU project under the leadership of the Laser Zentrum Hannover e.V. (LZH), passive and active protective systems for jackets, trousers, aprons and gloves are being developed. This clothing offers effective protection against laser radiation with output densities of up to 20 Megawatts per square meter.
Protective professional clothing for firefighters, for welders or for chemists is readily available on the market. Despite the wide use of lasers in industry and research, there is currently no suitable protective clothing for the user, and when it comes to hazards from intensive laser radiation, only suitable protective laser eyewear has been classified and certified.

It is also important to have safety clothing to protect the skin, especially for the increasing number of cutting and welding applications with hand-guided laser systems. Operators are often in the directly next to the interaction zone between the laser beam and the materials to be processed, and often high-power lasers are in use. Under unfavorable conditions, for example when highly reflective surfaces are being processsed, the laser beam may be quickly deflected towards the user, causing severe skin burns. Also, near infrared laser radiation may penetrate into deeper tissue, and damage blood vessels and other biological tissue.

Therefore, the laser protective clothing developed within the framework of the EU “PROSYS” project is pursuing two strategies. First, researchers have designed a passive system with multi-layer technical textiles. The top layer has a special coating which diffusely reflects the laser radiation as much as possible. Radiation which may penetrate this first layer is then evenly spread out by the middle layer. Any residual heat, at least for a limited amount of time, which enters the energy barrier of the inner layer, may trigger a pain sensation. “This is intentional. Users should notice that they are being exposed to hazardous radiation, so they have the chance to withdraw their hand or arm,” explains Michael Hustedt, Head of the Safety Group at the LZH, and coordinator of the PROSYS project. Normal reaction time is up to 4 seconds, and the passive system can protect users for output densities up to 900 kW/m2, making this protective clothing 20 times more effective than what is presently available on the market.

The effectivity of the protective clothing can be even further improved by integrating an active system, which uses sensors embedded in the different layers. If the sensors are damaged by radiation, they send an electrical signal to the laser in less than 100 ms, and the laser is automatically shut off. The operators’ movement is not impaired, since the active system uses a wireless communication system between the safety transmitter and the receiver for the laser. Since the complete shut-down of the laser may take approximately 80 milliseconds, a combination of the active sensors and the passive protection layers makes sense. This system offers protection against output densities of up to 20 MW/m2.

The international consortium, which is composed of three research institutes, nine SMEs and one large enterprise, has developed prototypes of the protective clothing, which have been presented at different industrial fairs this year (e.g. Hannover Messe, LASER World of Photonics). Plans are being made for launching the products on the market soon.

Further developmental work will be, above all, concerned with improving the active systems, making them even more robust and flexible, without losing their protective functions. Practical tests in an industrial setting should provide further information for improving ergonomics and wearing comfort of the protective clothing, in order to achieve high user acceptance. The focus of this work is, for example, on reducing the weight of the material and improving the haptic characteristics of the gloves.

The research project PROSYS-Laser was supported by the European Union within the 7th Research Framework Programme (project number NMP2-SE-2009-229165). The partners of the LZH are the Centre Suisse d´Electronique et de Microtechnique SA and the Sächsische Textilforschungsinstitut e.V., as well as the enterprises CIM-mes Projekt sp. z o.o., Trans-Textil GmbH, TTI Technische Textilien International GmbH, JUTEC GmbH, Grado Zero Espace S.r.l., Smartex S.r.l., TDV Industries, Promat International NV, Laser on demand GmbH and Clean-Lasersysteme GmbH.
Business Development & Communications Department
Michael Botts
Public Relations
Tel.: +49 511 2788-151
Fax: +49 511 2788-100

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>