Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent Protective Clothing for High-Output Lasers

07.06.2013
In an EU project under the leadership of the Laser Zentrum Hannover e.V. (LZH), passive and active protective systems for jackets, trousers, aprons and gloves are being developed. This clothing offers effective protection against laser radiation with output densities of up to 20 Megawatts per square meter.
Protective professional clothing for firefighters, for welders or for chemists is readily available on the market. Despite the wide use of lasers in industry and research, there is currently no suitable protective clothing for the user, and when it comes to hazards from intensive laser radiation, only suitable protective laser eyewear has been classified and certified.

It is also important to have safety clothing to protect the skin, especially for the increasing number of cutting and welding applications with hand-guided laser systems. Operators are often in the directly next to the interaction zone between the laser beam and the materials to be processed, and often high-power lasers are in use. Under unfavorable conditions, for example when highly reflective surfaces are being processsed, the laser beam may be quickly deflected towards the user, causing severe skin burns. Also, near infrared laser radiation may penetrate into deeper tissue, and damage blood vessels and other biological tissue.

Therefore, the laser protective clothing developed within the framework of the EU “PROSYS” project is pursuing two strategies. First, researchers have designed a passive system with multi-layer technical textiles. The top layer has a special coating which diffusely reflects the laser radiation as much as possible. Radiation which may penetrate this first layer is then evenly spread out by the middle layer. Any residual heat, at least for a limited amount of time, which enters the energy barrier of the inner layer, may trigger a pain sensation. “This is intentional. Users should notice that they are being exposed to hazardous radiation, so they have the chance to withdraw their hand or arm,” explains Michael Hustedt, Head of the Safety Group at the LZH, and coordinator of the PROSYS project. Normal reaction time is up to 4 seconds, and the passive system can protect users for output densities up to 900 kW/m2, making this protective clothing 20 times more effective than what is presently available on the market.

The effectivity of the protective clothing can be even further improved by integrating an active system, which uses sensors embedded in the different layers. If the sensors are damaged by radiation, they send an electrical signal to the laser in less than 100 ms, and the laser is automatically shut off. The operators’ movement is not impaired, since the active system uses a wireless communication system between the safety transmitter and the receiver for the laser. Since the complete shut-down of the laser may take approximately 80 milliseconds, a combination of the active sensors and the passive protection layers makes sense. This system offers protection against output densities of up to 20 MW/m2.

The international consortium, which is composed of three research institutes, nine SMEs and one large enterprise, has developed prototypes of the protective clothing, which have been presented at different industrial fairs this year (e.g. Hannover Messe, LASER World of Photonics). Plans are being made for launching the products on the market soon.

Further developmental work will be, above all, concerned with improving the active systems, making them even more robust and flexible, without losing their protective functions. Practical tests in an industrial setting should provide further information for improving ergonomics and wearing comfort of the protective clothing, in order to achieve high user acceptance. The focus of this work is, for example, on reducing the weight of the material and improving the haptic characteristics of the gloves.

The research project PROSYS-Laser was supported by the European Union within the 7th Research Framework Programme (project number NMP2-SE-2009-229165). The partners of the LZH are the Centre Suisse d´Electronique et de Microtechnique SA and the Sächsische Textilforschungsinstitut e.V., as well as the enterprises CIM-mes Projekt sp. z o.o., Trans-Textil GmbH, TTI Technische Textilien International GmbH, JUTEC GmbH, Grado Zero Espace S.r.l., Smartex S.r.l., TDV Industries, Promat International NV, Laser on demand GmbH and Clean-Lasersysteme GmbH.
Contact:
Business Development & Communications Department
Michael Botts
Public Relations
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/en/publications/pressreleases/2013/prosys

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>