Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by deep sea sponges: Creating flexible minerals

15.03.2013
Scientists imitate the skeleton of natural sea sponges to produce a flexible mineral

Scientists at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research (MPI-P) in Germany have created a new synthetic hybrid material with a mineral content of almost 90 percent, yet extremely flexible.


The nanometer size of the calcite bricks facilitates bending of the synthetic spicules. The radius of curvature upon bending is very large compared to the size of the individual particles. This prevents a fracture of the brittle mineral bricks. source: Work group Tremel, JGU

They imitated the structural elements found in most sea sponges and recreated the sponge spicules using the natural mineral calcium carbonate and a protein of the sponge. Natural minerals are usually very hard and prickly, as fragile as porcelain. Amazingly, the synthetic spicules are superior to their natural counterparts in terms of flexibility, exhibiting a rubber-like flexibility.

The synthetic spicules can, for example, easily be U-shaped without breaking or showing any signs of fracture This highly unusual characteristic, described by the German researchers in the current issue of Science, is mainly due to the part of organic substances in the new hybrid material. It is about ten times as much as in natural spicules.

Spicules are structural elements found in most sea sponges. They provide structural support and deter predators. They are very hard, prickly, and even quite difficult to cut with a knife. The spicules of sponges thus offer a perfect example of a lightweight, tough, and impenetrable defense system, which may inspire engineers to create body armors of the future.

The researchers led by Wolfgang Tremel, Professor at Johannes Gutenberg University Mainz, and Hans-Jürgen Butt, Director at the Max Planck Institute for Polymer Research in Mainz, used these natural sponge spicules as a model to cultivate them in the lab. The synthetic spicules were made from calcite (CaCO3) and silicatein-α. The latter is a protein from siliceous sponges that, in nature, catalyzes the formation of silica, which forms the natural silica spicules of sponges. Silicatein-α was used in the lab setting to control the self-organization of the calcite spicules. The synthetic material was self-assembled from an amorphous calcium carbonate intermediate and silicatein and subsequently aged to the final crystalline material. After six months, the synthetic spicules consisted of calcite nanocrystals aligned in a brick wall fashion with the protein embedded like cement in the boundaries between the calcite nanocrystals. The spicules were of 10 to 300 micrometers in length with a diameter of 5 to 10 micrometers.

As the scientists, among them chemists, polymer researchers, and the molecular biologist Professor Werner E. G. Müller from the Mainz University Medical Center, also write in their Science publication, the synthetic spicules have yet another special characteristic, i.e., they are able to transmit light waves even when they are bent.

Images:
http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_flexmin1.jpg
The fracture properties of spicules were probed with a micromanipulator and recorded in-situ with a scanning electron microscope for natural (i-vi) and synthetic spicules (vii-xii). The synthetic spicule (vii-xii) did not fracture even under extreme loading and deformation conditions (xi) that lead to plastic deformation.
source: Work group Tremel, JGU

http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_flexmin2.jpg
The nanometer size of the calcite bricks facilitates bending of the synthetic spicules. The radius of curvature upon bending is very large compared to the size of the individual particles. This prevents a fracture of the brittle mineral bricks.
source: Work group Tremel, JGU

Publication:
Filipe Natalio, Tomas P. Corrales, Martin Panthöfer, Dieter Schollmeyer, Ingo Lieberwirth, Werner E. G. Müller, Michael Kappl, Hans-Jürgen Butt and Wolfgang Tremel
Flexible Minerals: Self-Assembled Calcite Spicules with Extreme Bending Strength
Science, 15 March 2013
DOI: 10.1126/science.1216260
http://www.sciencemag.org/content/339/6125/1298

Contact and further information:
Professor Dr. Wolfgang Tremel
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25135
fax +49 6131 39-25605
e-mail: tremel@uni-mainz.de
http://www.ak-tremel.chemie.uni-mainz.de/index.php

Professor Dr. Hans-Jürgen Butt
Max Planck Institute of Polymer Research
Ackermannweg 12
D 55128 Mainz, GERMANY
e-mail: butt@mpip-mainz.mpg.de
http://www.mpic.de/en/research/biogeochemistry/group-jochum.html

Related links:
http://www.youtube.com/watch?v=XNleh50Ug_k

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/16247_ENG_HTML.php
http://www.sciencemag.org/content/339/6125/1298

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>