Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INRS develops a nanohybrid with remarkable properties using a new laser-plasma process

28.01.2013
Towards a new generation of optoelectronic nanomaterials

By achieving the synthesis of a novel nanohybrid structure by means of the pulsed laser ablation (PLA) technique, Professor My Ali El Khakani and his team paved the way for a new generation of optoelectronic materials.

The combination of carbon nanotubes and lead sulfide (PbS) nanoparticles was performed using an effective and relatively simple process that offers considerable latitude for creating other nanohybrids for a variety of applications. The INRS Énergie Matériaux Télécommunications Research Centre researcher's work, published in the renowned journal Advanced Materials, presents very promising prospects for the development of third-generation solar devices, fast photodetectors, and optoelectronic switches.

In recent years, research on the photoelectronic properties of semiconductor nanoparticles, such as PbS, has been growing. The coupling of these nanoparticles with carbon nanotubes is a promising strategy for effectively generating photocurrent. The synthesis methods used by other research teams had significant limitations. "When chemically synthesizing nanohybrids, researchers used ligands, which prevented nanoparticle agglomeration, on one hand, but significantly affected the charge transfer dynamics from nanoparticles to nanotubes," said Professor El Khakani. Ligands reduce photoresponse efficiency and increase the reaction time—two effects that were not observed in nanohybrids produced by PLA since PbS is in direct atomic contact with the nanotubes' surafce.

"At the beginning, we didn't know if the nanohybrids would form in such a way as to enable their effective use for photodetection," said Ibrahima Ka, an INRS doctoral student working under the supervision of Professor El Khakani and co-supervised by Professor Dongling Ma. "By optimizing our approach, we developed nanohybrids whose photoactivity can be almost tailored at will." By integrating the new nanohybrid material into functional photoconductive devices, the researchers were pleased to demonstrate its strong photoresponse, which overpasses the results obtained by other methods. Thus, they have been able to achieve photoresponse values as high as 670% at 633 nm and 1350% at 405 nm under conditions where other nanohybrids did not exceed 37%. Furthermore, when the material is illuminated by a laser, the photocurrent response time is 1,000 to 100,000 times faster than those reported to date for other nanohybrids.

The PLA synthesis process produces very pure nanostructures and provides greater control over nanohybrid characteristics. Professor El Khakani's results demonstrate the enormous potential of these carbon nanotubes with PbS quantum dots.

About this publication

The article entitled "Pulsed Laser Ablation based Direct Synthesis of Single-Wall Carbon Nanotube/PbS Quantum Dot Nanohybrids Exhibiting Strong, Spectrally Wide and Fast Photoresponse" was published in the journal Advanced Materials on December 11, 2012, (Vol. 24, pp. 6289) and selected for the journal's frontispiece. The research of My Ali El Khakani, a professor and researcher at INRS's Énergie Matériaux Télécommunications Research Centre, was made possible by the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec Nature and Technology fund, as well as support from Plasma-Québec's strategic network and Nano-Québec.

About INRS

Institut national de recherche scientifique (INRS) is research intensive university which offers graduate level training. It ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows at its four centres in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally, even as it plays a key role in the development of concrete solutions to the problems faced by our society.

Source: Stéphanie Thibault, Communications Advisor

Communications and Public Affairs Department
INRS
Tel.: 450-687-5010 ext. 8865
stephanie.thibault@adm.inrs.ca

Stéphanie Thibault | EurekAlert!
Further information:
http://www.inrs.ca

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>