Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative solutions for urban mining

31.05.2013
Urban mining is a performed by extracting metal resources from electronic products. Gold from PCBs and Lithium from seawater - read more about Prof. Jai-Koo Park of Hanyang University on his research into urban mining.

Jai-Koo Park of Natural Resources and Environmental Engineering is the director of the Mineral Processing and Environment Processing Lab at Hanyang University.



Park’s recent publications include "Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater" in the Chemical Engineering Journal, and "Preparation of Sizable and Uniform-Sized Spherical Ceramic Foams: Drop-in-oil and Agar Gelation" in the Journal of American Ceramic Society.

While alternative energy is considered a substitute for our reliance on oil, as of yet there has not been found a substantial replacement source for metal resources. Limitations of natural resources and constant increases in prices have brought a sense of urgency to the importance of ‘urban mining’.

Urban mining is a performed by extracting metal resources from electronic products. The traditional form of mining involves prospecting, mining, and processing. However, urban mining only requires processing, thus reducing the costs of investing in prospecting and mining.

The question lies on the methodology. After comminution, a proper crushing and grinding process, the materials go through concentration and separation. The particle comparatively affluent with metal element, placed in an aqueous solution, will then be divided via leaching.

During comminution, importance lies on the liberation of valuable metal. After solvent extraction, porous nano-materials are applied in the process of separating metallic ions from the aqueous solution.

In the past, Park focused his research on creating innovative porous ceramic materials. By redirecting his expertise in porous ceramic materials, Park applied his work to the recovery of materials.

For example, in an effort to effectively recover Au (gold), Park devised innovative methods of liberating and separating valuable metal sources from printed circuit boards (PCBs). One technique of Prof. Park’s for recovering valuable metal sources from PCBs of disposed small domestic appliances involves using a device for separating electronic components from printed circuit board assembly (PCBA). Another of his technique separates valuable metal from pulverized PCB.

In addition, Park’s research interest also lies in securing lithium. Major growth in the lithium-ion battery industry has led to an increase in lithium demand. Lithium ion-sieves (LISs) have found to be suitable for lithium recovery from seawater due to their low toxicity, low cost, and high chemical stability.

An alternative solution was provided by Park in which he succeeded in recovering lithium from seawater by using millimeter-sized spherical ion-sieve foams.

Park diligently researched to find an absorbent for lithium and was finally able to determine that millimeter-sized SIFs prepared from spinel lithium manganese oxide via a combined process of foaming, drop-in-oil, and agar gelation was the solution.

Park’s method uses an aqueous agar solution as the binder, resulting in an environmental friendly, rapid gelation at low temperatures, that has high gelling strength, low manufacturing cost, and involves a simple manufacturing process.

Current research is underway in extracting medium and heavy rare earth minerals such as Ce and La from heavy minerals such as monazite or illmenite recovered from sub-marine sediment. Moreover, Park is focusing on developing a minetailing geopolymer for back filing of mine goaf as a means of recycling by-products of mines.

Article written by Jisoo Lee: themanjsl@hanyang.ac.kr

Joohong Ahnn | Research asia research news
Further information:
http://www.hanyang.ac.kr/english/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>