Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative solutions for urban mining

31.05.2013
Urban mining is a performed by extracting metal resources from electronic products. Gold from PCBs and Lithium from seawater - read more about Prof. Jai-Koo Park of Hanyang University on his research into urban mining.

Jai-Koo Park of Natural Resources and Environmental Engineering is the director of the Mineral Processing and Environment Processing Lab at Hanyang University.



Park’s recent publications include "Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater" in the Chemical Engineering Journal, and "Preparation of Sizable and Uniform-Sized Spherical Ceramic Foams: Drop-in-oil and Agar Gelation" in the Journal of American Ceramic Society.

While alternative energy is considered a substitute for our reliance on oil, as of yet there has not been found a substantial replacement source for metal resources. Limitations of natural resources and constant increases in prices have brought a sense of urgency to the importance of ‘urban mining’.

Urban mining is a performed by extracting metal resources from electronic products. The traditional form of mining involves prospecting, mining, and processing. However, urban mining only requires processing, thus reducing the costs of investing in prospecting and mining.

The question lies on the methodology. After comminution, a proper crushing and grinding process, the materials go through concentration and separation. The particle comparatively affluent with metal element, placed in an aqueous solution, will then be divided via leaching.

During comminution, importance lies on the liberation of valuable metal. After solvent extraction, porous nano-materials are applied in the process of separating metallic ions from the aqueous solution.

In the past, Park focused his research on creating innovative porous ceramic materials. By redirecting his expertise in porous ceramic materials, Park applied his work to the recovery of materials.

For example, in an effort to effectively recover Au (gold), Park devised innovative methods of liberating and separating valuable metal sources from printed circuit boards (PCBs). One technique of Prof. Park’s for recovering valuable metal sources from PCBs of disposed small domestic appliances involves using a device for separating electronic components from printed circuit board assembly (PCBA). Another of his technique separates valuable metal from pulverized PCB.

In addition, Park’s research interest also lies in securing lithium. Major growth in the lithium-ion battery industry has led to an increase in lithium demand. Lithium ion-sieves (LISs) have found to be suitable for lithium recovery from seawater due to their low toxicity, low cost, and high chemical stability.

An alternative solution was provided by Park in which he succeeded in recovering lithium from seawater by using millimeter-sized spherical ion-sieve foams.

Park diligently researched to find an absorbent for lithium and was finally able to determine that millimeter-sized SIFs prepared from spinel lithium manganese oxide via a combined process of foaming, drop-in-oil, and agar gelation was the solution.

Park’s method uses an aqueous agar solution as the binder, resulting in an environmental friendly, rapid gelation at low temperatures, that has high gelling strength, low manufacturing cost, and involves a simple manufacturing process.

Current research is underway in extracting medium and heavy rare earth minerals such as Ce and La from heavy minerals such as monazite or illmenite recovered from sub-marine sediment. Moreover, Park is focusing on developing a minetailing geopolymer for back filing of mine goaf as a means of recycling by-products of mines.

Article written by Jisoo Lee: themanjsl@hanyang.ac.kr

Joohong Ahnn | Research asia research news
Further information:
http://www.hanyang.ac.kr/english/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>