Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative concept for knee cartilage treatment

09.10.2013
Researchers have developed a material that can be used for the controlled release of a substance when subjected to cyclic mechanical loading. This work, carried out within the context of the National Research Programme “Smart Materials” (NRP 62), offers a potential treatment method for specific tissues such as knee cartilage.

In order to regenerate, knee cartilage, paradoxically, needs to be placed under mechanical stress, as happens whenever we take a step and our knees take our weight. When stimulated in this way, the cartilage cells develop receptors that are sensitive to the growth factors produced by the organism.

It is also at this very moment that they would be most receptive to medication. Working on this basis, Dominique Pioletti and Harm-Anton Klok from EPF Lausanne have developed a smart material that only releases a substance when the material is mechanically loaded.

Threshold effect
As they describe in a recent publication (*), their material takes the form of a hydrogel matrix, liposome-type nanoparticles and, finally, a payload – in this case a dye. When subjected to cyclic mechanical loading, the hydrogel matrix heats up. Once subjected to heat, the diameter of the liposomes shrinks significantly. This frees up space in the matrix, increasing its permeability and facilitating the release of the dye from the matrix. “One of the main difficulties has been the development of nanoparticles that respond to our specification,” explains Dominique Pioletti. “Basically, for the concept to work, their response to the heating process must have a very clear threshold between the two to three degrees that separate the static and stimulated states.”

The researchers then wanted to verify that it was actually the heating process resulting from the repetition of the mechanical loading that caused the dye to be released. During an initial experiment, the material was subjected to cyclic mechanical loading but the heat produced was evacuated in order to prevent any local temperature increase in the material. “This test enabled us to exclude a sponge-type function, whereby the dye was only being released as a result of the pressure,” explains Dominique Pioletti. During a second experiment, the nanoparticles were removed. The matrix heated up as expected due to the cyclic mechanical loading but none of the dye was released. The researchers concluded that the three elements of the composite material were required for the system as a whole to function as intended.

Long-term prospects
Whilst the researchers have been able to demonstrate the validity of their concept, Dominique Pioletti stresses that a future treatment is still a long way off. “First of all we need to develop a hydrogel and nanoparticles that are safe and biodegradable, before progressing to clinical trials. And, above all, we need to find partners interested in investing in our project.”
National Research Programme “Smart Materials” (NRP 62)
NRP 62 is a cooperation programme between the Swiss National Science Foundation (SNSF) and the Innovation Promotion Agency (CTI). The programme's aim is not only to promote scientific excellence but also to promote the successful industrial exploitation of smart materials and their application. NRP 62 also strives to link up the available skills and resources of various research institutions in Switzerland. The research work provides the technologies required to develop smart materials and the structures needed to integrate these. Having started its second phase at the beginning of 2013, NRP 62 now consists of 14 projects whose funding has been continued thanks to their high potential for practical application. NRP 62 will come to an end in 2015.
(*)Mohamadreza Nassajian Moghadam, Vitaliy Kolesov, Arne Vogel, Harm-Anton Klok and Dominique P. Pioletti (2013). Controlled release from a mechanically-stimulated thermosensitive self-heating composite hydrogel. Biomaterials online: doi: 10.1016/j.biomaterials.2013.09.065

(available in pdf format from the SNSF to media representatives only: com@snf.ch)

Contact
Prof. Dominique P. Pioletti
Laboratory of Biomechanical Orthopedics
EPFL
CH-1015 Lausanne
Phone: +41 21 693 83 41
E-mail: dominique.pioletti@epfl.ch
http://lbo.epfl.ch

Abteilung Kommunikation | idw
Further information:
http://www.nrp62.ch
http://www.snf.ch/F/medias/communiques

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>