Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation is step toward digital graphene transistors

07.09.2011
Researchers are making progress in creating digital transistors using a material called graphene, potentially sidestepping an obstacle thought to dramatically limit the material's use in computers and consumer electronics.

Graphene is a one-atom-thick layer of carbon that conducts electricity with little resistance or heat generation. After its discovery in 2004 - which earned a Nobel Prize in physics - it was touted as a potential replacement for silicon, possibly leading to ultrafast devices with simplified circuits that might be less expensive to manufacture.

However, graphene's luster has dulled in recent years for digital applications as researchers have discovered that it has no "band gap," a trait that is needed to switch on and off, which is critical for digital transistors.

"The fact that graphene is a zero-band-gap material by nature has raised many questions in terms of its usefulness for digital applications," said Purdue doctoral student Hong-Yan Chen.

Electrons in semiconductors like silicon exist at two energy levels, known as the valence and conduction bands. The energy gap between these two levels is called the band gap. Having the proper band gap enables transistors to turn on and off, which allows digital circuits to store information in binary code consisting of sequences of ones and zeroes.

Chen has led a team of researchers in creating a new type of graphene inverter, a critical building block of digital transistors. Other researchers have created graphene inverters, but they had to be operated at 77 degrees Kelvin, which is minus 196 Celsius (minus 320 Fahrenheit).

"If graphene could be used in digital applications, that would be really important," said Chen, who is working with Joerg Appenzeller, a professor of electrical and computer engineering and scientific director of nanoelectronics at Purdue's Birck Nanotechnology Center.

The Purdue researchers are the first to create graphene inverters that work at room temperature and have a gain larger than one, a basic requirement for digital electronics that enables transistors to amplify signals and control its switching from 0 to 1.

Findings were detailed in a paper, "Complementary-Type Graphene Inverters Operating at Room-Temperature," presented in June during the 2011 Device Research Conference in Santa Barbara, Calif.

Thus far graphene transistors have been practical only for specialized applications, such as amplifiers for cell phones and military systems. However, the new inverters represent a step toward learning how to use the material to create graphene transistors for broader digital applications that include computers and consumer electronics.

To create electronic devices, silicon is impregnated with impurities to change its semiconducting properties. Such "doping" is not easily applicable to graphene. However, the researchers have potentially solved this problem by developing "electrostatic doping," which makes it possible for graphene inverters to mimic the characteristics of silicon inverters.

Electrostatic doping is induced through the electric field between metal gates, which are located 40 nanometers away from graphene channels. The doping can be altered by varying the voltage, enabling researchers to test specific doping levels.

"This will allow us to find the sweet spot for operating the device," Chen said.

Further work will be needed to integrate the prototype into a working graphene circuit for digital applications.

The research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

A publication-quality photo is available at http://news.uns.purdue.edu/images/2011/appenzeller-graphene.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110906AppenzellerGraphene.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>