Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared technology for measuring the effect of fire on materials

20.12.2011
The main problem associated with measuring the effects of fire on materials lies in the temperature of the flames, which reaches over 1000 ºC and can obscure the actual temperature of the material.

In addition, there is the problem of the high concentration of gasses (CO2, H2O and others), which makes it difficult to obtain clear images of the sample being subjected to fire. In order to solve this problem, the UC3M scientists who developed this method used a measurement that utilizes the infrared spectrum.

"To do this, we had to use an infrared camera, properly set, spectrally, for measuring the temperature, as well as image processing that allowed us to determine the measurement, discounting the flame's fanning effects", explains one of the authors, Fernando López, a tenured professor in the Physics Department at UC3M.

This research, which was carried out in collaboration with the Airbus Systems Laboratory, and which has been published in the journal Measurement Science and Technology, has applications in the aeronautical industry, where it is essential to know what effects fire will have on the composite materials (fiberglass, carbon fiber, etc.) that are used in airplanes. Moreover, this method could be applied in other sectors where a material's resistance to fire is crucial, such as in rail and land transport or fire protection in housing.

The advantage of using this method of measurement is that it can be done without any direct contact with the material, almost instantly (in milliseconds) and under severe conditions (when flames are present), where other systems of measurement cannot be used, the researchers explain. The professor states that, "The main objective is to quickly and precisely measure the real temperature of the sample over the entire surface, including the part that is hidden by the flames, and to do this from a distance." And he adds, "All of this, as a function of time, and taking into consideration the rise and fall of the temperature over time."

Another line of investigation currently being developed by these scientists from the Laboratorio del Infrarrojo (LIR – Infrared Laboratory) at the UC3M is one that allows them to measure, from a distance, the thermodynamic parameters of materials (emissivity and diffusivity, coefficients of conductivity and specific heat), by means of an infrared analysis of the image. In addition, they are studying ways in which to use their ability to detect hidden subsurface defects that can be generated by fire or other causes.

Measuring temperatures in the presence of flames that are "dirty" based on their subproducts, includes a strong infrared component of absorption and emission that must be discounted in a very precise manner, according to the researchers. This technology falls within the spectral methods, which the LIR-UC3M specializes in, that is, those that are based on properties that depend on the wavelength.

More information:

Title: Infrared thermography of solid surfaces in a fire
Authors: Meléndez, J.; Foronda, A.; Aranda, J. M.; López, F.; López del Cerro, F. J.
Source: Measurement Science & Technology 21 (10): Art. No. 105504 OCT 2010
ISSN: 0957-0233

Ana Herrera | EurekAlert!
Further information:
http://www.uc3m.es

More articles from Materials Sciences:

nachricht Scientists predict a new superhard material with unique properties
18.06.2018 | Moscow Institute of Physics and Technology

nachricht A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive
15.06.2018 | University of California - San Diego

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>