Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Impurity atoms introduce waves of disorder in exotic electronic material

Sophisticated electron-imaging technique reveals widespread "destruction," offering clues to how material works as a superconductor

It's a basic technique learned early, maybe even before kindergarten: Pulling things apart - from toy cars to complicated electronic materials - can reveal a lot about how they work. "That's one way physicists study the things that they love; they do it by destroying them," said Séamus Davis, a physicist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the J.G. White Distinguished Professor of Physical Sciences at Cornell University.

Davis and colleagues recently turned this destructive approach - and a sophisticated tool for "seeing" the effects - on a material they've been studying for its own intrinsic beauty, and for the clues it may offer about superconductivity, the ability of some materials to carry electric current with no resistance. The findings, published in the Proceedings of the National Academy of Sciences the week of October 17, 2011, reveal how substituting just a few atoms can cause widespread disruption of the delicate interactions that give the material its unique properties, including superconductivity.

The material, a compound of uranium, ruthenium, and silicon, is known as a "heavy-fermion" system. "It's a system where the electrons zooming through the material stop periodically to interact with electrons localized on the uranium atoms that make up the lattice, or framework of the crystal," Davis said. These stop-and-go magnetic interactions slow down the electrons, making them appear as if they've taken on extra mass, but also contribute to the material's superconductivity.

In 2010*, Davis and a group of collaborators visualized these heavy fermions for the first time using a technique developed by Davis, known as spectroscopic imaging scanning tunneling microscopy (SI-STM), which measures the wavelength of electrons of the material in relation to their energy.

The idea of the present study was to "destroy" the heavy fermion system by substituting thorium for some of the uranium atoms. Thorium, unlike uranium, is non-magnetic, so in theory, the electrons should be able to move freely around the thorium atoms, instead of stopping for the brief magnetic encounters they have at each uranium atom. These areas where the electrons should flow freely are known as "Kondo holes," named for the physicist who first described the scattering of conductive electrons due to magnetic impurities.

Free-flowing electrons might sound like a good thing if you want a material that can carry current with no resistance. But Kondo holes turn out to be quite destructive to superconductivity. By visualizing the behavior of electrons around Kondo holes for the first time, Davis' current research helps to explain why.

"There have been beautiful theories that predict the effects of Kondo holes, but no one knew how to look at the behavior of the electrons, until now," Davis said.

Working with thorium-doped samples made by physicist Graeme Luke at McMaster University in Ontario, Davis' team used SI-STM to visualize the electron behavior.

"First we identified the sites of the thorium atoms in the lattice, then we looked at the quantum mechanical wave functions of the electrons surrounding those sites," Davis said.

The SI-STM measurements bore out many of the theoretical predictions, including the idea proposed just last year by physicist Dirk Morr of the University of Illinois that the electron waves would oscillate wildly around the Kondo holes, like ocean waves hitting a lighthouse.

"Our measurements revealed waves of disturbance in the 'quantum glue' holding the heavy fermions together," Davis said.

So, by destroying the heavy fermions - which must pair up for the material to act as a superconductor - the Kondo holes disrupt the material's superconductivity.

Davis' visualization technique also reveals how just a few Kondo holes can cause such widespread destruction: "The waves of disturbance surrounding each thorium atom are like the ripples that emanate from raindrops suddenly hitting a still pond on a calm day," he said. "And like those ripples, the electronic disturbances travel out quite a distance, interacting with one another. So it takes a tiny number of these impurities to make a lot of disorder."

What the scientists learn by studying the exotic heavy fermion system may also pertain to the mechanism of other superconductors that can operate at warmer temperatures.

"The interactions in high-temperature superconductors are horribly complicated," Davis said. "But understanding the magnetic mechanism that leads to pairing in heavy fermion superconductors - and how it can so easily be disrupted - may offer clues to how similar magnetic interactions might contribute to superconductivity in other materials."

This research was supported by the DOE's Office of Science, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institute for Advanced Research. Additional collaborators included Mohammad Hamidian and Ines Firmo of Brookhaven Lab and Cornell, and Andy Schmidt now at the University of California, Berkeley.


First Images of Heavy Electrons in Action:

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at , or follow Brookhaven Lab on Twitter, .

Karen McNulty Walsh | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>