Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impurity atoms introduce waves of disorder in exotic electronic material

18.10.2011
Sophisticated electron-imaging technique reveals widespread "destruction," offering clues to how material works as a superconductor

It's a basic technique learned early, maybe even before kindergarten: Pulling things apart - from toy cars to complicated electronic materials - can reveal a lot about how they work. "That's one way physicists study the things that they love; they do it by destroying them," said Séamus Davis, a physicist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the J.G. White Distinguished Professor of Physical Sciences at Cornell University.

Davis and colleagues recently turned this destructive approach - and a sophisticated tool for "seeing" the effects - on a material they've been studying for its own intrinsic beauty, and for the clues it may offer about superconductivity, the ability of some materials to carry electric current with no resistance. The findings, published in the Proceedings of the National Academy of Sciences the week of October 17, 2011, reveal how substituting just a few atoms can cause widespread disruption of the delicate interactions that give the material its unique properties, including superconductivity.

The material, a compound of uranium, ruthenium, and silicon, is known as a "heavy-fermion" system. "It's a system where the electrons zooming through the material stop periodically to interact with electrons localized on the uranium atoms that make up the lattice, or framework of the crystal," Davis said. These stop-and-go magnetic interactions slow down the electrons, making them appear as if they've taken on extra mass, but also contribute to the material's superconductivity.

In 2010*, Davis and a group of collaborators visualized these heavy fermions for the first time using a technique developed by Davis, known as spectroscopic imaging scanning tunneling microscopy (SI-STM), which measures the wavelength of electrons of the material in relation to their energy.

The idea of the present study was to "destroy" the heavy fermion system by substituting thorium for some of the uranium atoms. Thorium, unlike uranium, is non-magnetic, so in theory, the electrons should be able to move freely around the thorium atoms, instead of stopping for the brief magnetic encounters they have at each uranium atom. These areas where the electrons should flow freely are known as "Kondo holes," named for the physicist who first described the scattering of conductive electrons due to magnetic impurities.

Free-flowing electrons might sound like a good thing if you want a material that can carry current with no resistance. But Kondo holes turn out to be quite destructive to superconductivity. By visualizing the behavior of electrons around Kondo holes for the first time, Davis' current research helps to explain why.

"There have been beautiful theories that predict the effects of Kondo holes, but no one knew how to look at the behavior of the electrons, until now," Davis said.

Working with thorium-doped samples made by physicist Graeme Luke at McMaster University in Ontario, Davis' team used SI-STM to visualize the electron behavior.

"First we identified the sites of the thorium atoms in the lattice, then we looked at the quantum mechanical wave functions of the electrons surrounding those sites," Davis said.

The SI-STM measurements bore out many of the theoretical predictions, including the idea proposed just last year by physicist Dirk Morr of the University of Illinois that the electron waves would oscillate wildly around the Kondo holes, like ocean waves hitting a lighthouse.

"Our measurements revealed waves of disturbance in the 'quantum glue' holding the heavy fermions together," Davis said.

So, by destroying the heavy fermions - which must pair up for the material to act as a superconductor - the Kondo holes disrupt the material's superconductivity.

Davis' visualization technique also reveals how just a few Kondo holes can cause such widespread destruction: "The waves of disturbance surrounding each thorium atom are like the ripples that emanate from raindrops suddenly hitting a still pond on a calm day," he said. "And like those ripples, the electronic disturbances travel out quite a distance, interacting with one another. So it takes a tiny number of these impurities to make a lot of disorder."

What the scientists learn by studying the exotic heavy fermion system may also pertain to the mechanism of other superconductors that can operate at warmer temperatures.

"The interactions in high-temperature superconductors are horribly complicated," Davis said. "But understanding the magnetic mechanism that leads to pairing in heavy fermion superconductors - and how it can so easily be disrupted - may offer clues to how similar magnetic interactions might contribute to superconductivity in other materials."

This research was supported by the DOE's Office of Science, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institute for Advanced Research. Additional collaborators included Mohammad Hamidian and Ines Firmo of Brookhaven Lab and Cornell, and Andy Schmidt now at the University of California, Berkeley.

RELATED LINKS:

First Images of Heavy Electrons in Action: http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1130

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom , or follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab .

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>