Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the performance of titanium implants by bioactive composite coatings

07.10.2013
Researchers in Japan and China tested a novel urease fabrication process for coating titanium implants with bioactive CaP/gelatin composites. Published in Science and Technology of Advanced Materials, the research suggests that titanium implants coated with CaP and gelatin have great potential in clinical joint replacement or dental implants.

Titanium (Ti) and its alloys are the most popular materials used in orthopedic implants because of their good mechanical and chemical properties, biocompatibility, corrosion resistance and low allergenicity. One drawback, however, is that they cannot bond directly to living bone, but need to be coated with bioactive materials to improve their integration.


Figure 1. Masson’s trichrome surface staining of bone-implant interface after implantation for 4 weeks (A, C, E) and 8 weeks (B, D, F) (n = 3). A, B: pure Ti; C, D: CaP/ Ti; E, F: CaP/gel/Ti.

Calcium phosphate (CaP) and collagen are the main constituents of natural bone, and therefore gelatin – a denatured form of collagen – has excellent biodegradability and biocompatibility properties. Many organic-inorganic composites combine the advantages of each component, hence a composite of CaP and gelatin may be an effective coating for Ti implants.

In a study published in the journal Science and Technology of Advanced Materials, researchers in Japan and China tested a novel urease fabrication process for coating titanium implants with bioactive CaP/gelatin composites.

In the study, Wei-Qi Yan and colleagues implanted tiny 2 mm by 10 mm CaP/gel/Ti and CaP/Ti rods into the thigh bone of rabbits, while pure Ti rods served as controls. Four and eight weeks following the operation, the authors observed much more new bone on the surface of the composite CaP/gel/Ti rods than in the other two groups. What's more, the CaP/gel/Ti rods bonded to the surrounding bone directly, with no intervening soft tissue layer.

The authors concluded that the CaP/gel/Ti implants fabricated using their urease process not only enhanced the proliferation of stem cells and differentiation of bone cells, but also the bone bonding ability of the implants. This research suggests that titanium implants coated with CaP and gelatin have great potential in clinical joint replacement or dental implants.

For more information about this research, please contact:

National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494

Journal information
[1] Zhong-Ming Huang et al, Promotion of osteogenic differentiation of stem cells and increase of bone-bonding ability in vivo using urease-treated titanium coated with calcium phosphate and gelatin, Sci. Technol. Adv. Mater. 14 (2013) 055001 (doi:10.1088/1468-6996/14/5/055001)

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>