Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implants that Respond to Your Body

04.08.2009
Dynamic, 3D Pattern Formation within Protein-based Gels

Modern regenerative medicine is on the lookout for implantable materials that can change as the surrounding tissue does, and two Stanford University researchers have made some new gel materials that do just that.

Karin Straley and Professor Sarah Heilshorn have developed a method for preparing protein-based implant materials that can evolve with the changing needs of the host biological system. Not only can their new materials change in different ways at different times, they can do so at different places within the implant materials.

The materials, of a type known as hydrogels, are prepared from connected blocks of assorted designer proteins. Certain parts of some blocks degrade on exposure to specific enzymes, creating a three-dimensional pattern throughout the gel. If the gels are in a biological system and the triggering enzymes are selected to be ones produced by the system at a certain place and rate, the pattern evolves in response to the biochemistry of the system.

And, as a bonus for medical treatment, “we also demonstrated that the material released during this pattern formation can be modified to serve as a drug-delivery vehicle, enabling the release of multiple small molecules with distinct spatial and temporal delivery profiles,” states Prof. Heilshorn.

It seems the designer proteins were the key to the technological breakthrough. The proteins were prepared as block copolymers, which could then be crosslinked to form a hydrogel. Genetic templates were used to synthesize the protein-polymers, allowing precise, molecular level control over their content. This control enabled the Stanford researchers to develop hydrogels that were initially stable and subject to the usual gel mechanisms, and also to finely tune the degradation rates of selected components on exposure to the relevant proteases.

The new structures could contain completely internal voids or be open, connected geometries. Adding and removing material was no problem as both the protease enzymes that cause the degradation and the degraded material fragments diffuse readily through the hydrogel structure.

When asked to describe the possibilities presented by the work, Prof. Heilshorn explained: “As an application of this technology, a materials scientist can design a single medical implant to meet two or more separate sets of sequential, optimization criteria. For example, initially the implant should have mechanical properties that enable easy surgical implantation, such as a bulk slab of material that can be sutured into place without disturbing any delicate micro- or nanopatterns. Then after implantation, the locally secreted enzymes can remodel the material to create tunnels that may promote the growth of blood vessels into the implant [which then becomes a tissue scaffold]. Finally, the enzymes secreted by the blood vessels may trigger development of a porous 3D pattern to stimulate the infiltration of other cell types into the new tissue.

In the future, these scaffolds are envisioned as a means to enable “two-way” communication between cells and engineered biomaterials. For example, encapsulated stem cells will initially secrete a specific set of enzymes that could trigger the release of drugs to induce differentiation into a specialized cell type. These newly specialized cells will alter their secreted enzymes, turning off delivery of the differentiation drugs and turning on delivery of a new set of therapeutic drugs. Therefore, these biomaterials provide cells with a dynamic environment that can respond to fluctuations in cell and tissue biochemistry.”

The work was largely supported by a grant through the National Academies Keck Futures Initiative and is published in Advanced Materials.

“Dynamic, Three-Dimensional Pattern Formation within Enzyme-Responsive Hydrogels”

K. S. Straley and S. C. Heilshorn, Advanced Materials, 2009, DOI: 10.1002/adma.200901865

Available online at http://doi.wiley.com/10.1002/adma.200901865 on August 4, 2009.

Direct Contact: Sarah Heilshorn, Assistant Professor

Materials Science and Engineering
Stanford University
http://www.stanford.edu/group/heilshorn

Carmen Teutsch | Wiley-VCH Verlag
Further information:
http://www.wiley-vch.de
http://doi.wiley.com/10.1002/adma.200901865
http://www.stanford.edu/group/heilshorn

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>