Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the complex growth process of strontium titanate thin films

16.04.2014

Researchers at Japan's National Institute for Materials Science (NIMS) and Advanced Institute for Materials Research (AIMR) have achieved the first successful atomic-level observation of growing strontium titanate thin films.

Led by Assistant Professor Takeo Ohsawa of NIMS and Associate Professor Taro Hitosugi of Tohoku University's AIMR, a research team has developed a new advanced system, combining a super-resolution microscope and a deposition chamber for growing oxide thin films.


(Left) Scanning tunneling microscopy image of 0.3 unit-cell SrTiO3 thin film (15 nm × 15 nm). Atomic arrangement is clearly observed to be identical between the SrTiO3 thin film (purple) and the SrTiO3 substrate underneath (blue). (Right) A growth model illustrating the formation of SrTiO3 thin film. The TiO2 layer present on the surface of the SrTiO2 substrate is transferred to the surface of the thin film.

Copyright : National Institute for Materials Science (NIMS)

With this system, they successfully observed for the first time the growing metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate (SrTiO3). Based on these observations, they identified the mechanism involved in the growth of the thin films in which titanium atoms rose to the surface of the film.

Metal oxides, including perovskite-type oxides such as SrTiO3, are commonly used due to their diverse properties, which include superconductivity, ferromagnetism, ferroelectricity and catalytic effect.

In recent years, novel properties generated at the interface between two dissimilar oxides have been vigorously investigated. However, little is known about the mechanism involved in the formation of such interfaces. Understanding this mechanism is key to further research advances in this field.

The NIMS/AIMR research group developed an innovative system that combines a scanning tunneling microscope capable of identifying individual atoms with a pulsed laser deposition method that enables the growth of high-quality thin films.

In addition, they also established a method for preparing a single-crystal SrTiO3 substrate on which atoms are arranged in a periodic pattern. Epitaxial thin films were grown on the surface of the substrates and the growth was observed with atomic-scale spatial resolution. In their observations, they found there was a great difference in the growth process when SrTiO3 and SrOx thin films were deposited on the surface of the substrates.

Furthermore, the team identified a phenomenon in which excess titanium atoms present on the surface of the SrTiO3 substrate rose to the surface of the thin film. These observations facilitated a clear atomic-scale understanding of the growth process regarding how oxide thin films are formed.

These results may not only contribute to the understanding of the origin of interfacial properties but also lead to the creation of new electronics devices through the development of new functional materials.

This research was carried out as part of the Japan Science and Technology Agency’s Strategic Basic Research Programs. The research will be published in the U.S.-based scientific journal, ACS Nano, in the near future.

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: NIMS SrTiO3 chamber developed mechanism observations periodic properties substrates titanium

More articles from Materials Sciences:

nachricht Nanoscientists develop the 'ultimate discovery tool'
24.06.2016 | Northwestern University

nachricht Researchers find better way to 'herd' electrons in solar fuel devices
21.06.2016 | University of British Columbia

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>