Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the complex growth process of strontium titanate thin films

16.04.2014

Researchers at Japan's National Institute for Materials Science (NIMS) and Advanced Institute for Materials Research (AIMR) have achieved the first successful atomic-level observation of growing strontium titanate thin films.

Led by Assistant Professor Takeo Ohsawa of NIMS and Associate Professor Taro Hitosugi of Tohoku University's AIMR, a research team has developed a new advanced system, combining a super-resolution microscope and a deposition chamber for growing oxide thin films.


(Left) Scanning tunneling microscopy image of 0.3 unit-cell SrTiO3 thin film (15 nm × 15 nm). Atomic arrangement is clearly observed to be identical between the SrTiO3 thin film (purple) and the SrTiO3 substrate underneath (blue). (Right) A growth model illustrating the formation of SrTiO3 thin film. The TiO2 layer present on the surface of the SrTiO2 substrate is transferred to the surface of the thin film.

Copyright : National Institute for Materials Science (NIMS)

With this system, they successfully observed for the first time the growing metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate (SrTiO3). Based on these observations, they identified the mechanism involved in the growth of the thin films in which titanium atoms rose to the surface of the film.

Metal oxides, including perovskite-type oxides such as SrTiO3, are commonly used due to their diverse properties, which include superconductivity, ferromagnetism, ferroelectricity and catalytic effect.

In recent years, novel properties generated at the interface between two dissimilar oxides have been vigorously investigated. However, little is known about the mechanism involved in the formation of such interfaces. Understanding this mechanism is key to further research advances in this field.

The NIMS/AIMR research group developed an innovative system that combines a scanning tunneling microscope capable of identifying individual atoms with a pulsed laser deposition method that enables the growth of high-quality thin films.

In addition, they also established a method for preparing a single-crystal SrTiO3 substrate on which atoms are arranged in a periodic pattern. Epitaxial thin films were grown on the surface of the substrates and the growth was observed with atomic-scale spatial resolution. In their observations, they found there was a great difference in the growth process when SrTiO3 and SrOx thin films were deposited on the surface of the substrates.

Furthermore, the team identified a phenomenon in which excess titanium atoms present on the surface of the SrTiO3 substrate rose to the surface of the thin film. These observations facilitated a clear atomic-scale understanding of the growth process regarding how oxide thin films are formed.

These results may not only contribute to the understanding of the origin of interfacial properties but also lead to the creation of new electronics devices through the development of new functional materials.

This research was carried out as part of the Japan Science and Technology Agency’s Strategic Basic Research Programs. The research will be published in the U.S.-based scientific journal, ACS Nano, in the near future.

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: NIMS SrTiO3 chamber developed mechanism observations periodic properties substrates titanium

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>