Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Icy Exposure Creates Armored Polymer High Tech Foams

30.07.2009
Chemists and engineers at the University of Warwick have found that exposing particular mixtures of polymer particles and other materials to sudden freeze-drying can create a high-tech armored foam that could be used for a number of purposes, including a new range of low power room temperature gas sensors.

Freeze-drying has been used to create structured foams before, the first such experiments being with rubber in the 1940s with the ice crystals formed throughout this process acting as templates to form the porous foam structure.

However when trying to create particularly strong, stable polymer foam structures engineers and chemists today tend to rely on more complicated processes. The most straightforward of these methods is the so-called foaming or expanding process, which consists of introducing small discontinuities (for example by dispersing a compressed gas) into a soft polymer and then taking a further step to reinforce the cellular structure created upon polymerization or cooling.

The University of Warwick team’s new approach to fabricate polymer foams by “ice-templating” differs from previous strategies in that they use a special range of colloids (mixtures of small particles dispersed in water), with crucial differences in their hardness and size, as key building blocks. In particular they employ a blend of larger ‘‘soft’’ polymer latexes (with diameters in range of 200–500 nm) in conjunction with a range of much smaller ‘‘hard’’ nanoparticles such as silica (with diameters in range of 25–35 nm).

When such a mixture is exposed to freeze-drying the difference in diameters induces a concentration enrichment of the smaller harder particles in the mix near the wall of each growing ice crystal. This creates a cellular structured foam in just one step in which each cell is effective given an armored layer of the smaller, harder nanoparticles.

The Warwick researchers also found that by changing parameters, such as the nanoparticle/polymer latex ratios and concentrations, as well as the nanoparticle type, it was possible to fine-tune a certain the pore structure, and the overall porosity, of the polymer foams. The team were also able to employ various types of inorganic nanoparticles to create this instant freeze-dry foam armoring including: silica, Laponite clay, aluminium oxide, as well as small polystyrene latex particles.

The armored polymer foams have a range of applications but one of the most interesting could be a new range of room temperature low power gas sensors. The team increased the complexity of their mixture of colloids by the addition of a third colloidal component, carbon black particles with approximate diameters of 120 nm, which allowed them to produce an conductive foam 14% of the weight of which was carbon black particles.

Lead researcher Dr Stefan Bon from the University of Warwick’s Department of Chemistry said:

“This new process allows us to create interesting foam based nanocomposite materials which show promising results as gas sensors that can operate at room temperature and differ from traditional metal-oxide-based sensors. We know that existing chemical sensors formed from composites of carbon black particles and insulating polymers have been previously shown to form room-temperature (thus low-power) chemical sensors for detecting a range of volatile organic compounds. Now in one step we can place the same material in a high tech polymer foam to create a new range of gas-sensor devices. We believe these materials could become a new generation of sensing porous films.”

Notes to editors
The research paper entitled “Conducting Nanocomposite Polymer Foams from Ice-Crystal-Templated Assembly of Mixtures of Colloids” by Catheline A. L. Colard, Richard A. Cave, Nadia Grossiord, James A. Covington, and Stefan A. F. Bon (all from the University of Warwick) has just been published in Advanced Materials and features on the cover of issue 28. Adv.Mater. 2009, 21(28), 2894-2898.

Images are also available, contact Kelly Parkes-Harrison, Communications Officer, University of Warwick, 02476 57422, 07824 540863, k.e.parkes@warwick.ac.uk

Kelly Parkes-Harrison | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>