Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hohenstein researchers improve functional sportswear

06.07.2010
Tests show the wide range of thermo-physiological properties in sports textiles

German manufacturers of sports textiles are among the most innovative companies in the textile industry. Researchers at the Hohenstein Institute in Bönnigheim are helping these companies to improve the functional properties of their textiles by developing practical construction guidelines.


One of the ways of assessing the comfort characteristics of sportswear and other textiles at the Hohenstein Institute is by using the thermo-regulatory articulated manikin Charlie.


The physiological comfort characteristics of sports textiles can be represented using the German school marks system from 1 (= \"very good\") to 6 (= \"unsatisfactory\").

In a recently completed research project: (AiF No. 15481 N), with funding from the Federal Ministry of Economics and Technology (BMWi) provided through the Federation of Industrial Research Associations (AIF), they drew specific conclusions about the physiological comfort characteristics of a variety of different types of knitted garments. The textile industry will be able to use the construction guidelines that resulted from the research work to continue developing and optimising functional clothing for all kinds of different sports.

The research project entailed investigating a total of 34 assorted knitted fabrics in respect of their thermo-physiological characteristics. These samples varied in terms of their fibres (PES, PP, PA, WO and CO and some mixed fibres), weight per unit area (100 to 329g), surface finish (hydrophilic, bioactive) and knit structure(e.g. single-jersey or pique). Specially selected representative samples were tested in controlled trials involving volunteers wearing them in a climate-controlled room. The skin model was used to measure thermo-physiological properties, i.e. how heat and moisture are transported through the textile. When this data was combined with the results of skin sensory testing, it was possible to work out a comfort rating for each sample. The textiles were assessed along the lines of the German school marks system, from 1 = "very good" to 6 = "unsatisfactory".

On average, all the knitted sports textiles that were investigated received marks that were satisfactory or better for sports textile comfort (TK(S)). Nine samples were awarded marks of 1.0 to 1.5 (= "very good"). Chemical fibres were at a distinct advantage when it came to transporting liquid perspiration and the way they dried. On the other hand, the natural fibre samples made of wool and cotton had the edge when it came to retaining perspiration. Comparing pairs of samples of textiles where the main fibre was polyamide, but with and without a hydrophilic finish, showed that the hydrophilic finish had a negative effect on the level of comfort, because the fabric took longer to dry. However, applying a hydrophilic finish to samples made of propylene or a mixture of cotton and polypropylene gave a better result for comfort because they did not stick to the skin so much.

Contact:
Hohenstein Institute
Martin Harnisch
m.harnisch@hohenstein.de
We are grateful to the Research Association of the Textile Research Council for its financial support for IGF project no. 15481 N, which was provided using funds from the Federal Ministry of Economics and Technology (BMWi) via the Federation of Industrial Research Associations AIF as part of the programme to support "Industrial Community Research and Development" (IGF).

We must also thank all members of the project support committee who, with their specialist expertise and willingness to contribute to the discussions, helped ensure a successful conclusion to the project.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-791-2010

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>