Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly precise nanostructuring using ultrasound: new procedure to produce porous metals

03.03.2011
They are corrosion resistant, mechanically strong and withstand exceedingly high temperatures. With such characteristics, porous metals are generating a growing interest in numerous innovative fields of technology.

They are characterised by nanostructured surfaces with pores measuring only a few nanometres in diameter. An international research team including Dr Daria Andreeva of Bayreuth University (department of Physical Chemistry II) has successfully developed a heavy-duty and cost-efficient ultrasound procedure for the design and production of such metallic structures.

In this process, metals are treated in an aqueous solution in such a way that cavities of a few nanometres evolve, in precisely defined gaps. For these tailor-made structures, there is already a broad spectrum of innovative applications, including air cleaning, energy storage or medical technology. Particularly promising is the use of porous metals in nanocomposites. These are a new class of composite materials, in which a very fine matrix structure is filled with particles ranging in size up to 20 nanometres.

The new technique utilises a process of bubble formation, which is termed cavitation in physics (derived from lat. "cavus" = "hollow"). In seafaring, this process is feared due to the great damage it can cause to ship propellers and turbines. For at very high rotation speeds, steam bubbles form under water. After a short period under extremely high pressure the bubbles collapse inwardly, thus deforming the metallic surfaces. The process of cavitation can also be generated using ultrasound. Ultrasound is composed of compressional waves with frequencies above the audible range (20 kHz) and generates vacuum bubbles in water and aqueous solutions. Temperatures of several thousand degrees centigrade and extremely high pressures of up to 1000 bar arise when these bubbles implode.

A precise control of this process may lead to a targeted nanostructuring of metals suspended in an aqueous solution – given certain physical and chemical characteristics of the metals. For metals react very differently when exposed to such sonication, as Dr Daria Andreeva together with her colleagues in Golm, Berlin and Minsk has shown. In metals with high reactivity such as zinc, aluminium and magnesium, a matrix structure is gradually formed, stabilised by an oxide coating. This results in porous metals that can for instance be further processed in composite materials. Noble metals such as gold, platinum, silver and palladium however behave differently. On account of their low oxidation tendency, they resist the ultrasound treatment and retain their initial structures and properties.

The fact that different metals react in dramatically different fashion to sonication can be exploited for innovations in materials science. Alloys can be converted in such a way to nanocomposites in which particles of the more stable material are encased in a porous matrix of the less stable metal. Very large surface areas thus arise in very limited space, which allow these nanocomposites to be used as catalysts. They effect particularly fast and efficient chemical reactions.

Together with Dr Daria Andreeva, the researchers Prof Dr Andreas Fery, Dr Nicolas Pazos-Perez and Jana Schäferhans, also of the department of Physical Chemistry II, contributed to the research results. With their colleagues at the Max Planck Institute of Colloids and Interfaces in Golm, the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Belarusian State University in Minsk, they have published their latest results online in the journal "Nanoscale".

Publication:

Ekaterina V. Skorb, Dmitri Fix, Dmitry G. Shchukin, Helmuth Möhwald, Dmitry V.
Sviridov, Rami Mousa, Nelia Wanderka, Jana Schäferhans, Nicolas Pazos-Perez,
Andreas Fery, and Daria V. Andreeva,
Sonochemical formation of metal sponges,
in: Nanoscale, Advance first,
DOI-Bookmark: 10.1039/c0nr00635a
Contact for further information:
Dr Daria Andreeva
Department of Physical Chemistry II
University of Bayreuth
95440 Bayreuth
Tel.: +49 (0) 921 / 55-2750
E-Mail: daria.andreeva@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Materials Sciences:

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

nachricht Here's a tip: Indented cement shows unique properties
20.07.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>