Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Highly precise nanostructuring using ultrasound: new procedure to produce porous metals

They are corrosion resistant, mechanically strong and withstand exceedingly high temperatures. With such characteristics, porous metals are generating a growing interest in numerous innovative fields of technology.

They are characterised by nanostructured surfaces with pores measuring only a few nanometres in diameter. An international research team including Dr Daria Andreeva of Bayreuth University (department of Physical Chemistry II) has successfully developed a heavy-duty and cost-efficient ultrasound procedure for the design and production of such metallic structures.

In this process, metals are treated in an aqueous solution in such a way that cavities of a few nanometres evolve, in precisely defined gaps. For these tailor-made structures, there is already a broad spectrum of innovative applications, including air cleaning, energy storage or medical technology. Particularly promising is the use of porous metals in nanocomposites. These are a new class of composite materials, in which a very fine matrix structure is filled with particles ranging in size up to 20 nanometres.

The new technique utilises a process of bubble formation, which is termed cavitation in physics (derived from lat. "cavus" = "hollow"). In seafaring, this process is feared due to the great damage it can cause to ship propellers and turbines. For at very high rotation speeds, steam bubbles form under water. After a short period under extremely high pressure the bubbles collapse inwardly, thus deforming the metallic surfaces. The process of cavitation can also be generated using ultrasound. Ultrasound is composed of compressional waves with frequencies above the audible range (20 kHz) and generates vacuum bubbles in water and aqueous solutions. Temperatures of several thousand degrees centigrade and extremely high pressures of up to 1000 bar arise when these bubbles implode.

A precise control of this process may lead to a targeted nanostructuring of metals suspended in an aqueous solution – given certain physical and chemical characteristics of the metals. For metals react very differently when exposed to such sonication, as Dr Daria Andreeva together with her colleagues in Golm, Berlin and Minsk has shown. In metals with high reactivity such as zinc, aluminium and magnesium, a matrix structure is gradually formed, stabilised by an oxide coating. This results in porous metals that can for instance be further processed in composite materials. Noble metals such as gold, platinum, silver and palladium however behave differently. On account of their low oxidation tendency, they resist the ultrasound treatment and retain their initial structures and properties.

The fact that different metals react in dramatically different fashion to sonication can be exploited for innovations in materials science. Alloys can be converted in such a way to nanocomposites in which particles of the more stable material are encased in a porous matrix of the less stable metal. Very large surface areas thus arise in very limited space, which allow these nanocomposites to be used as catalysts. They effect particularly fast and efficient chemical reactions.

Together with Dr Daria Andreeva, the researchers Prof Dr Andreas Fery, Dr Nicolas Pazos-Perez and Jana Schäferhans, also of the department of Physical Chemistry II, contributed to the research results. With their colleagues at the Max Planck Institute of Colloids and Interfaces in Golm, the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Belarusian State University in Minsk, they have published their latest results online in the journal "Nanoscale".


Ekaterina V. Skorb, Dmitri Fix, Dmitry G. Shchukin, Helmuth Möhwald, Dmitry V.
Sviridov, Rami Mousa, Nelia Wanderka, Jana Schäferhans, Nicolas Pazos-Perez,
Andreas Fery, and Daria V. Andreeva,
Sonochemical formation of metal sponges,
in: Nanoscale, Advance first,
DOI-Bookmark: 10.1039/c0nr00635a
Contact for further information:
Dr Daria Andreeva
Department of Physical Chemistry II
University of Bayreuth
95440 Bayreuth
Tel.: +49 (0) 921 / 55-2750

Christian Wißler | Universität Bayreuth
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>