Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Speed Charging Device – Success in High Capacity Graphene-Based Supercapacitors

21.09.2011
High expectations for electric vehicles and energy storage

Professor Jie Tang, Group Leader of the 1D Nanomaterials Research Group of the Materials Processing Unit, National Institute for Materials Science, and Mr. Qian Cheng, a doctoral student and NIMS Junior Researcher in the same Group, have succeeded in dramatically increasing the energy density of supercapacitors, which are used to store electrical energy.

Professor Jie Tang, Group Leader of the 1D Nanomaterials Research Group of the Materials Processing Unit (Unit Director: Yoshio Sakka), National Institute for Materials Science (President: Sukekatsu Ushioda), and Mr. Qian Cheng, a doctoral student and NIMS Junior Researcher in the same Group, have succeeded in dramatically increasing the energy density of supercapacitors, which are used to store electrical energy. This was realized by developing a new electrode in which graphene nanosheets are stacked in a layered structure with carbon nanotubes sandwiched between the graphene layers.

Various new batteries, such as nickel metal hydride batteries, are currently being developed with the aims of achieving higher efficiency and higher energy storage for electric power supplies. In comparison with batteries, capacitors have a larger output power density to enable rapid charging, excellent durability to allow operations in both higher and lower extreme temperatures, better cyclicity for recharging repeatedly over a long period, and are also safer. However, it has been as a great technical challenge to realize high energy density due to the relatively low specific capacity of the conventional capacitor devices.

In order to achieve a revolutionary increase in density of energy storage, Professor Tang and her team, in collaboration with Professor Lu-Chang Qin of the University of North Carolina at Chapel Hill in the United States, have designed and developed a graphene-based composite structure, in which graphene is used as the base material of the capacitor electrodes and carbon nanotubes (CNT) are inserted between the graphene sheets. In this structure graphene offers a far larger specific surface area (2630 m2/g) than the conventional materials and the CNTs function as spacers as well as conducting paths to enable adsorption of a larger quantity of electrolyte ions on the graphene surface. With this graphene-CNT composite as the capacitor electrodes, Professor Tang has obtained a high energy density of 62.8 Wh/kg and output power density of 58.5 kW/kg using organic electrolyte. By using an ionic liquid as the electrolyte, they have achieved an energy density of 155.6 Wh/kg, which is comparable to that of nickel metal hydride batteries.

Among the many industrial applications of capacitors, the new capacitors developed in this research offer promises as power sources for electric and hybrid vehicles, which require high energy density. As the current production processes are also inexpensive and can be scaled up, large expectations are placed on practical applications.

This research achievement is published in the latest issue of Physical Chemistry Chemical Physics, a scientific journal published in London by the Royal Society of Chemistry.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>