Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Speed Charging Device – Success in High Capacity Graphene-Based Supercapacitors

21.09.2011
High expectations for electric vehicles and energy storage

Professor Jie Tang, Group Leader of the 1D Nanomaterials Research Group of the Materials Processing Unit, National Institute for Materials Science, and Mr. Qian Cheng, a doctoral student and NIMS Junior Researcher in the same Group, have succeeded in dramatically increasing the energy density of supercapacitors, which are used to store electrical energy.

Professor Jie Tang, Group Leader of the 1D Nanomaterials Research Group of the Materials Processing Unit (Unit Director: Yoshio Sakka), National Institute for Materials Science (President: Sukekatsu Ushioda), and Mr. Qian Cheng, a doctoral student and NIMS Junior Researcher in the same Group, have succeeded in dramatically increasing the energy density of supercapacitors, which are used to store electrical energy. This was realized by developing a new electrode in which graphene nanosheets are stacked in a layered structure with carbon nanotubes sandwiched between the graphene layers.

Various new batteries, such as nickel metal hydride batteries, are currently being developed with the aims of achieving higher efficiency and higher energy storage for electric power supplies. In comparison with batteries, capacitors have a larger output power density to enable rapid charging, excellent durability to allow operations in both higher and lower extreme temperatures, better cyclicity for recharging repeatedly over a long period, and are also safer. However, it has been as a great technical challenge to realize high energy density due to the relatively low specific capacity of the conventional capacitor devices.

In order to achieve a revolutionary increase in density of energy storage, Professor Tang and her team, in collaboration with Professor Lu-Chang Qin of the University of North Carolina at Chapel Hill in the United States, have designed and developed a graphene-based composite structure, in which graphene is used as the base material of the capacitor electrodes and carbon nanotubes (CNT) are inserted between the graphene sheets. In this structure graphene offers a far larger specific surface area (2630 m2/g) than the conventional materials and the CNTs function as spacers as well as conducting paths to enable adsorption of a larger quantity of electrolyte ions on the graphene surface. With this graphene-CNT composite as the capacitor electrodes, Professor Tang has obtained a high energy density of 62.8 Wh/kg and output power density of 58.5 kW/kg using organic electrolyte. By using an ionic liquid as the electrolyte, they have achieved an energy density of 155.6 Wh/kg, which is comparable to that of nickel metal hydride batteries.

Among the many industrial applications of capacitors, the new capacitors developed in this research offer promises as power sources for electric and hybrid vehicles, which require high energy density. As the current production processes are also inexpensive and can be scaled up, large expectations are placed on practical applications.

This research achievement is published in the latest issue of Physical Chemistry Chemical Physics, a scientific journal published in London by the Royal Society of Chemistry.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>