Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Pressure Generator Using a Superconducting Diamond Developed

05.07.2016

Integration of a Hime Diamond into the Device Simplifies Measurement of Electrical Resistance under Ultra-High Pressure.

Researchers of National Institute of Materials Science and Ehime University, Japan, developed a new diamond anvil cell by micro-fabricating a superconducting diamond, which conducts electricity like metal and serves as electrodes, on the world’s hardest and chip-proof nano-polycrystalline diamond.


Figure: Structures of diamond anvils. In the new DAC, a Hime diamond was used as a lower anvil and a superconducting diamond, which serves as electrodes, was fabricated on top of the anvil. In the conventional DAC, pressure is generated by two pointed curettes of the lower and upper diamonds pressing on each other. In this system, electrodes need to be inserted between the curette and the gasket.

Copyright : NIMS

A research group led by Yoshihiko Takano, a leader of the Nano Frontier Superconducting Materials Group, Environment and Energy Materials Division, NIMS, and another research group led by Tetsuo Irifune, a director of the Geodynamics Research Center (GRC), Ehime University, jointly developed a new diamond anvil cell (DAC) by micro-fabricating a superconducting diamond, which conducts electricity like metal and serves as electrodes, on the world’s hardest and chip-proof nano-polycrystalline diamond (Hime diamond). As a result, the conventional practice of skillfully attaching four electrodes to a small sample (of several dozen microns) was eliminated, and thus electrical resistance measurements under ultra-high pressure have become much easier. Furthermore, because diamond electrodes can be used repeatedly, physical property measurements have dramatically improved in terms of work and economic efficiencies.

As shown in the right diagram in Figure 1, a typical DAC is a device to generate high pressure by pressing curettes of paired diamond anvils on each other. To increase the pressure generated by the device, it is necessary to make the areas of the curettes smaller. Specifically, to generate ultra-high pressure (several hundreds of thousands of atmospheric pressure), curettes need to be about 400 microns in diameter.

Operation of such a device would be very difficult due to the requirement that the sizes of the samples to be studied need to be as small as about 100 microns. To generate a million atmospheric pressure or higher, the sizes of the samples need to be even smaller, making it extremely challenging to manually attach electrodes to the samples.

Accordingly, research group micro-fabricated superconducting diamond electrodes on the top of the anvil using the electron-beam lithography method. As it is convenient to use a plate-shaped diamond for the fabrication of electrodes using lithography, they combined a plate-shaped diamond and another diamond with a curette to form a diamond anvil cell with its shape as shown in the left diagram in Figure 1.

As a result, research group succeeded in developing a new diamond anvil cell by combining the world’s hardest diamond electrodes and the world’s hardest diamond anvil. Because advanced experimental technologies are required, materials R&D under ultra-high pressure is still largely unexplored. As such, this field has great potential to offer opportunities for exploring novel materials and superconductors with extraordinary functions. We believe that this new technology will contribute to Japan’s advancement in materials development.

A part of this research was supported by the Premier Research Institute for Ultrahigh-pressure Sciences (PRIUS), which has been recognized by the Ministry of Education, Culture, Sports, Science and Technology as a shared-use research facility.

This study was presented on February 23 at a PRIUS Symposium to be held at the Geodynamics Research Center (GRC), Ehime University.

Associated links

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>