Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance, organic nanowire phototransistors open the way for optoelectronic device miniaturization

13.03.2013
Research team of Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea, developed high-performance organic phototransistors (OPTs) based on single-crystalline n-channel organic nanowires.
Phototransistors are a kind of transistors in which the incident light intensity can modulate the charge-carrier density in the channel. Compared with conventional photodiodes, phototransistors enable easier control of light-detection sensitivity without problems such as the noise increment. However, to date, the research has mostly focused on thin-film OPTs, and nanoscale OPTs have scarcely been reported.

OPTs have many intrinsic advantages over their inorganic counterparts, such as the chemical tunability of optoelectronic properties by molecular design and high potential in low cost, light-weight, flexible applications.

Single-crystalline nano-/microwires (NWs/MWs) based on organic semiconductors have attracted great interest recently as they are promising building blocks for various electronic and optoelectronic applications. In particular, OPTs based on single-crystalline NWs/MWs may yield higher light sensitivity than their bulk counterparts. In addition, their one-dimensional, intrinsically defect-free and highly ordered nature will allow a deeper understanding of the fundamental mechanisms of charge generation and transport in OPTs, while enabling a bottom-up fabrication of optoelectronic nanodevices

Prof. Joon Hak Oh and Hojeong Yu, working at UNIST, together with Prof. Zhenan Bao at Stanford University, USA, have worked on n-channel single-crystalline nanowire organic phototransistors (NW-OPTs) and observed significant enhancement in the charge-carrier mobility of NW-OPTs.

Prof. Oh said, ¡°The development of OPTs based on n-channel single-crystalline organic semiconducting NWs/MWs is highly desirable for the bottom-up fabrication of complementary metal oxide semiconductor (CMOS)-like photoelectronic circuits, which provides various advantages such as high operational stability, easy control of photoswitching voltages, high photosensitivity and responsivity.¡±

The photoelectronic characteristics of the single-crystalline NW-OPTs such as the photoresponsivity, the photo-switching ratio, and the photoconductive gain, were analyzed from the I-V characteristics coupled with light irradiation and compared with those of vacuum-deposited thin-film devices. The external quantum efficiencies (EQEs) were also investigated for the NW-OPTs and thin-film OPTs. In addition, they calculated the charge accumulation and release rates from deep traps, and investigated the effects of incident light intensity on their photoelectronic properties.

A mobility enhancement is observed when the incident optical power density increases and the wavelength of the light source matches the light-absorption range of the photoactive material. The photoswitching ratio is strongly dependent upon the incident optical power density, whereas the photoresponsivity is more dependent on matching the light-source wavelength with the maximum absorption range of the photoactive material.

NW-OPTs based on n-channel semiconductor, N,N ¡ä-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI), exhibited much higher external quantum efficiency (EQE) values (¡Ö7900 times larger) than thin-film OPTs, with a maximum EQE of 263 000%. This phenomena result from the intrinsically defect-free single-crystalline nature of the BPE-PTCDI NWs. In addition, an approach was devised to analyze the charge-transport behaviors using charge accumulation/release rates from deep traps under on/off switching of external light sources.

¡°Our approach to charge-accumulation/release-rate calculations could provide a fundamental understanding about charge-carrier-density variations under light irradiation, which subsequently enables in-depth study of OPTs,¡± said Prof. Oh, ¡°Hence organic single-crystalline NW-OPTs are a highly promising alternative to conventional thin-film-type photodiodes, and can effectively pave the way for optoelectronic device miniaturization.¡±

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science, and Technology (MEST), and the Global Frontier Research Center for Advanced Soft Electronics and published in Advanced Functional Materials (Title: High-Performance Phototransistors Based on Single-Crystalline n-Channel Organic Nanowires and Photogenerated Charge-Carrier Behaviors, 5 Feb 2013).

The article can be found at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201201848/abstract

Eunhee Song | EurekAlert!
Further information:
http://www.unist.ac.kr

More articles from Materials Sciences:

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>