Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Mobility Organic Transistor from Solution

02.02.2011
Fabrication of the World¡¯s Highest Mobility Organic Crystal Transistor by Simple Process of Solution Dripping and Exposure to Vapor

A team headed by Dr. Kazuhito Tsukagoshi, a Principal Investigator at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with Professor Kazuo Takimiya of Hiroshima University, succeeded in fabricating an organic transistor with the world¡¯s highest field effect mobility directly on a substrate by developing a solution process for producing organic crystal transistor from solution.

With the development of mobile devices such as notebook PCs and electronic books, portability of information/image media is progressing. However, liquid crystal displays, which are currently the mainstream technology, are produced on a glass substrate due to limitations on the transistor manufacturing temperature. Although thinner glass substrates are required in order to reduce weight and thereby improve portability, there are limits to glass thickness, as glass substrate displays have low impact resistance and are easily broken. To solve this problem, if organic transistors can be used, it will be possible to manufacture high performance pixel-drive transistor arrays on plastic substrates, which offer the combined advantages of light weight and flexibility.

In this work, the researchers independently developed a method that makes the fullest possible use of self-assembly, in which crystals are formed by spontaneous overlaying of organic molecules. High performance organic crystal transistors can be produced simply by spin-coating the material, which is dissolved in an organic solvent, on a substrate, and then exposing the material to a solvent vapor for several hours. Normally, organic thin film devices contain a large number of crystal grain boundaries, which reduce conductivity. However, this crystal film contains no grain boundaries, and high characteristics can be obtained even when the film is fabricated in air. A transistor which was fabricated using this crystal achieved the world¡¯s highest field effect mobility of 9.1cm2/Vs in a transistor produced from a solution. This is a dramatic improvement in comparison with the field effect mobility of many devices produced by general solution methods, which is limited to approximately 1cm2/Vs.

With conventional organic semiconductor single crystals, where electrical conductivity is concerned, mobility increases when the device is cooled, reaching at peak at around -70¡ãC, and then decreases at lower temperatures. However, with the device produced by this method, mobility increased continuously in measurements down to -200¡ãC, and there was no scattering of electrical conductivity due to crystal grain boundaries, etc. Although the mechanism of conduction in organic crystal semiconductors had been disputed until now, this result also clarified the fact that the mechanism responsible for conduction is band-type conduction.

This method is simple and does not require a vacuum device, etc., and it easily improves the properties of organic semiconductors. In the future, application to roll-type continuous processes will also be possible, and it will be effective in research aimed at realizing flexible information/image media.

This research was carried out as part of the research topic ¡°High Operating Speed Organic Transistors by Nano Interface/Electronic State Control¡± (Research Representative: Kazuhito Tsukagoshi) in the research field ¡°Establishment of Innovative Manufacturing Technology based on Nanoscience¡± (Research Supervisor: Yasuhiro Horiike, Emeritus Fellow, National Institute for Materials Science) in the Japan Science and Technology Agency Targeted Basic Research Program ¨C Team Type Research (Core Research for Evolutional Science and Technology: CREST).

Contact information:

For more detail:

Kazuhito Tsukagoshi
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4894
FAX: +81-29-860-4706
E-Mail: tsukagoshi.kazuhito(at)nims.go.jp
For general inquiry:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail£ºpr(at)nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>