Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Mobility Organic Transistor from Solution

02.02.2011
Fabrication of the World¡¯s Highest Mobility Organic Crystal Transistor by Simple Process of Solution Dripping and Exposure to Vapor

A team headed by Dr. Kazuhito Tsukagoshi, a Principal Investigator at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with Professor Kazuo Takimiya of Hiroshima University, succeeded in fabricating an organic transistor with the world¡¯s highest field effect mobility directly on a substrate by developing a solution process for producing organic crystal transistor from solution.

With the development of mobile devices such as notebook PCs and electronic books, portability of information/image media is progressing. However, liquid crystal displays, which are currently the mainstream technology, are produced on a glass substrate due to limitations on the transistor manufacturing temperature. Although thinner glass substrates are required in order to reduce weight and thereby improve portability, there are limits to glass thickness, as glass substrate displays have low impact resistance and are easily broken. To solve this problem, if organic transistors can be used, it will be possible to manufacture high performance pixel-drive transistor arrays on plastic substrates, which offer the combined advantages of light weight and flexibility.

In this work, the researchers independently developed a method that makes the fullest possible use of self-assembly, in which crystals are formed by spontaneous overlaying of organic molecules. High performance organic crystal transistors can be produced simply by spin-coating the material, which is dissolved in an organic solvent, on a substrate, and then exposing the material to a solvent vapor for several hours. Normally, organic thin film devices contain a large number of crystal grain boundaries, which reduce conductivity. However, this crystal film contains no grain boundaries, and high characteristics can be obtained even when the film is fabricated in air. A transistor which was fabricated using this crystal achieved the world¡¯s highest field effect mobility of 9.1cm2/Vs in a transistor produced from a solution. This is a dramatic improvement in comparison with the field effect mobility of many devices produced by general solution methods, which is limited to approximately 1cm2/Vs.

With conventional organic semiconductor single crystals, where electrical conductivity is concerned, mobility increases when the device is cooled, reaching at peak at around -70¡ãC, and then decreases at lower temperatures. However, with the device produced by this method, mobility increased continuously in measurements down to -200¡ãC, and there was no scattering of electrical conductivity due to crystal grain boundaries, etc. Although the mechanism of conduction in organic crystal semiconductors had been disputed until now, this result also clarified the fact that the mechanism responsible for conduction is band-type conduction.

This method is simple and does not require a vacuum device, etc., and it easily improves the properties of organic semiconductors. In the future, application to roll-type continuous processes will also be possible, and it will be effective in research aimed at realizing flexible information/image media.

This research was carried out as part of the research topic ¡°High Operating Speed Organic Transistors by Nano Interface/Electronic State Control¡± (Research Representative: Kazuhito Tsukagoshi) in the research field ¡°Establishment of Innovative Manufacturing Technology based on Nanoscience¡± (Research Supervisor: Yasuhiro Horiike, Emeritus Fellow, National Institute for Materials Science) in the Japan Science and Technology Agency Targeted Basic Research Program ¨C Team Type Research (Core Research for Evolutional Science and Technology: CREST).

Contact information:

For more detail:

Kazuhito Tsukagoshi
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4894
FAX: +81-29-860-4706
E-Mail: tsukagoshi.kazuhito(at)nims.go.jp
For general inquiry:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail£ºpr(at)nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>