Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High Mobility Organic Transistor from Solution

Fabrication of the World¡¯s Highest Mobility Organic Crystal Transistor by Simple Process of Solution Dripping and Exposure to Vapor

A team headed by Dr. Kazuhito Tsukagoshi, a Principal Investigator at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), in joint research with Professor Kazuo Takimiya of Hiroshima University, succeeded in fabricating an organic transistor with the world¡¯s highest field effect mobility directly on a substrate by developing a solution process for producing organic crystal transistor from solution.

With the development of mobile devices such as notebook PCs and electronic books, portability of information/image media is progressing. However, liquid crystal displays, which are currently the mainstream technology, are produced on a glass substrate due to limitations on the transistor manufacturing temperature. Although thinner glass substrates are required in order to reduce weight and thereby improve portability, there are limits to glass thickness, as glass substrate displays have low impact resistance and are easily broken. To solve this problem, if organic transistors can be used, it will be possible to manufacture high performance pixel-drive transistor arrays on plastic substrates, which offer the combined advantages of light weight and flexibility.

In this work, the researchers independently developed a method that makes the fullest possible use of self-assembly, in which crystals are formed by spontaneous overlaying of organic molecules. High performance organic crystal transistors can be produced simply by spin-coating the material, which is dissolved in an organic solvent, on a substrate, and then exposing the material to a solvent vapor for several hours. Normally, organic thin film devices contain a large number of crystal grain boundaries, which reduce conductivity. However, this crystal film contains no grain boundaries, and high characteristics can be obtained even when the film is fabricated in air. A transistor which was fabricated using this crystal achieved the world¡¯s highest field effect mobility of 9.1cm2/Vs in a transistor produced from a solution. This is a dramatic improvement in comparison with the field effect mobility of many devices produced by general solution methods, which is limited to approximately 1cm2/Vs.

With conventional organic semiconductor single crystals, where electrical conductivity is concerned, mobility increases when the device is cooled, reaching at peak at around -70¡ãC, and then decreases at lower temperatures. However, with the device produced by this method, mobility increased continuously in measurements down to -200¡ãC, and there was no scattering of electrical conductivity due to crystal grain boundaries, etc. Although the mechanism of conduction in organic crystal semiconductors had been disputed until now, this result also clarified the fact that the mechanism responsible for conduction is band-type conduction.

This method is simple and does not require a vacuum device, etc., and it easily improves the properties of organic semiconductors. In the future, application to roll-type continuous processes will also be possible, and it will be effective in research aimed at realizing flexible information/image media.

This research was carried out as part of the research topic ¡°High Operating Speed Organic Transistors by Nano Interface/Electronic State Control¡± (Research Representative: Kazuhito Tsukagoshi) in the research field ¡°Establishment of Innovative Manufacturing Technology based on Nanoscience¡± (Research Supervisor: Yasuhiro Horiike, Emeritus Fellow, National Institute for Materials Science) in the Japan Science and Technology Agency Targeted Basic Research Program ¨C Team Type Research (Core Research for Evolutional Science and Technology: CREST).

Contact information:

For more detail:

Kazuhito Tsukagoshi
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
TEL: +81-29-860-4894
FAX: +81-29-860-4706
E-Mail: tsukagoshi.kazuhito(at)
For general inquiry:
Public Relations Office, NIMS

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>