Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Infrared Helps Hyde Group to Develop Composites Manufacturing Technology

28.11.2011
An infrared heating system from Heraeus Noblelight is helping the Hyde Group of Stockport to develop composites manufacturing techniques to advance the application of composite structures in the aircraft of the future.

Composite materials are being increasingly specified in aircraft structures and components, with Boeing’s 787 Dreamliner currently featuring composites structures for over 50% of its structure, including the fuselage. This allows dramatic savings in weight allowing corresponding improvements in fuel economy.


Infrared emitters heat composites prior to forming and can be precisely controlled. Copyright Heraeus Noblelight 2011

The Hyde Group was founded in 1968 and is a leading global company with many years of experience of project management, design, production and support aspects of aircraft tooling. The scope of its tooling capabilities ranges from automated assembly systems, including robotic integration, bespoke machine tool design and manufacture, major assembly jigs, sub-assembly and all facets of detail tool manufacture from simple rubber and fluid press tooling to sophisticated lay-up tools and super plastic form tools.

It carries out extensive research and development projects and programmes for aircraft manufacturers and one such project involves the forming of multi-ply, pre-preg composites. Multi-ply composite assemblies are rigid by nature and, consequently, they must be softened if they are to be formed into specified profiles on moulding tools before curing in autoclaves. Hyde’s project engineers investigated various heating techniques to achieve the required softening of the multi-ply assemblies. The softening process was first investigated using hot air guns but warm air ovens were rejected as a solution because of their space requirement and oil-heated mould tools were considered to be potentially contaminating in a process which demands extreme cleanliness.

Eventually, after successful tests at Heraeus’s Neston Applications Centre, it was decided to use a fast-response, medium wave infrared heating system. This is installed in a robotic cell and the multi-ply assembly is located in front of the 6 kW infrared emitter by two robots, heated to around 70ºC until it is suitably pliable and then laid on the moulding tool, where specially designed rollers ensure that it follows the tool profile.

“We had used infrared previously to assist in glueing processes,” explains project engineer, Matt Garner. “We have been very pleased with their precise controllability and compactness in this new important project.”

Process Improvement by Exact Matching

Infrared heating technology offers various possibilities to optimize industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by selecting optimum wavelengths
• Spatially focused application of energy by matching the heating to the product shape

• Fast response times to reduce energy consumption

Consequently, infrared heat is always used when heat processes are to be implemented which require particular targets in terms of space, time or quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2010, Heraeus Noblelight had an annual turnover of 98.9 Million € and employed 689 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

The precious metals and technology group Heraeus headquartered in Hanau, Germany, is a global, family company with 160 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 4.1 billion and precious metal trading revenues of € 17.9 billion, as well as over 12,900 employees in more than 120 companies worldwide, Heraeus holds a leading position in its global markets.

For further information:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Germany
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>