Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy metals open path to high temperature nanomagnets

29.03.2011
How would you like to store all the films ever made on a device the size of an I-phone?

Magnets made of just a few metallic atoms could make it possible to build radically smaller storage devices and have also recently been proposed as components for spintronics devices. There's just one obstacle on the way. Nano-sized magnets have only been seen to work at temperatures a few hairs above absolute zero.

High temperature nanomagnets deviced by chemistry student
Now a chemistry student at the University of Copenhagen has demonstrated that molecular magnets using the metals ruthenium and osmium retain their magnetic properties at higher temperatures. Most likely due to the larger spin-orbit coupling and more diffuse electron cloud present in these heavier elements. Some of his findings have recently been published in Chemistry - A European Journal.
Iron not heavy enough
Kasper Steen Pedersen is studying for a Masters degree at the University of Copenhagen. Like many others in his chosen field of molecular magnetism he had been working with magnets based on 3d metal ions from iron. This seems an obvious choice when working with ordinary magnets which usually consist of about a trillion atoms. Single-molecule magnets are isolated molecules behaving like real magnets but they do not exhibit a three-dimensional order characteristic of a magnet.
Frozen magnets useless
Though interesting from a perspective of fundamental research, the need for very low temperatures make the miniscule magnets useless for any practical applications. So Pedersen wanted to see if another tack was possible.

"When you take a look at the periodic table of the elements the solution seems obvious. Ruthenium and osmium are in the same group in the periodic table as iron, so it ought to be possible to create magnets out of these substances as well by using our knowledge about molecular magnets based on iron" says Pedersen.

Surprising properties for non-iron metals
As it turned out the chemical synthesis needed to build molecular magnets out of the substances was relatively simple. But the measured properties were surprising.

"The chemical properties are the same for these metals as for iron. But the physical properties of the new magnets turned out to be very different from those made of iron. Basically, the magnetism arises from the electron spin but also from the motion of the electron around the nucleus. The latter contribution, which is very large for ruthenium, osmium and other heavy elements, has been largely ignored by the scientific community but we have now shown, experimentally, that is a very pronounced effect. And this is utterly new and exciting", explains Kasper Steen Pedersen.

Not quite a breakthrough
Using the unconventional metals for his magnets enabled Pedersen to raise the critical temperature only by a few Kelvin. However, the intriguing result that electron motion plays a large role for the magnetic properties paves the way for new synthetic approaches to molecular nanomagnets with unprecedented high critical temperatures.
"You'll not get me to call this a breakthrough. But it is a remarkable result for the field", concludes Kasper Steen Pedersen.

Some of his results have been published in Chem. Eur. J. 2010, 16, 13458-13464

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>