Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What can happen when graphene meets a semiconductor

22.11.2013
UWM study shows another feature that affects electron transport in graphene

For all the promise of graphene as a material for next-generation electronics and quantum computing, scientists still don't know enough about this high-performance conductor to effectively control an electric current.

Graphene, a one-atom-thick layer of carbon, conducts electricity so efficiently that the electrons are difficult to control. And control will be necessary before this wonder material can be used to make nanoscale transistors or other devices.

A new study by a research group at the University of Wisconsin-Milwaukee (UWM) will help. The group has identified new characteristics of electron transport in a two-dimensional sheet of graphene layered on top of a semiconductor.

The researchers demonstrated that when electrons are rerouted at the interface of the graphene and its semiconducting substrate, they encounter what's known as a Schottky barrier. If it's deep enough, electrons don't pass, unless rectified by applying an electric field – a promising mechanism for turning a graphene-based device on and off.

The group also found, however, another feature of graphene that affects the height of the barrier. Intrinsic ripples form on graphene when it is placed on top of a semiconductor.

The research group, led by Lian Li and Michael Weinert, UWM professors of physics, and Li's graduate student Shivani Rajput, conducted their experiment with the semiconductor silicon carbide. The results were published in the Nov. 21 issue of Nature Communications.

The ripples are analogous to the waviness of a sheet of paper that has been wetted and then dried. Except in this case, notes Weinert, the thickness of the sheet is less than one nanometer (a billionth of a meter).

"Our study says that ripples affect the barrier height and even if there's a small variation in it, the results will be a large change in the electron transport," says Li.

The barrier needs to be the same height across the whole sheet in order to ensure that the current is either on or off, he adds.

"This is a cautionary tale," says Weinert, whose calculations provided the theoretical analysis. "If you're going to use graphene for electronics, you will encounter this phenomenon that you will have to engineer around."

With multiple conditions affecting the barrier, more work is necessary to determine which semiconductors would be best suited to use for engineering a transistor with graphene.

The work also presents opportunity. The ability to control the conditions impacting the barrier will allow conduction in three dimensions, rather than along a simple plane. This 3D conduction will be necessary for scientists to create more complicated nano-devices, says Weinert.

Other contributors on the paper include Mingxing Chen, postdoctoral researcher working with Weinert, Yaoyi Li and Ying Liu, postdoctoral researchers in the Li lab (Liu is now at the Institute for Quantum Computing in Waterloo, Canada.)

Lian Li | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>