Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What can happen when graphene meets a semiconductor

22.11.2013
UWM study shows another feature that affects electron transport in graphene

For all the promise of graphene as a material for next-generation electronics and quantum computing, scientists still don't know enough about this high-performance conductor to effectively control an electric current.

Graphene, a one-atom-thick layer of carbon, conducts electricity so efficiently that the electrons are difficult to control. And control will be necessary before this wonder material can be used to make nanoscale transistors or other devices.

A new study by a research group at the University of Wisconsin-Milwaukee (UWM) will help. The group has identified new characteristics of electron transport in a two-dimensional sheet of graphene layered on top of a semiconductor.

The researchers demonstrated that when electrons are rerouted at the interface of the graphene and its semiconducting substrate, they encounter what's known as a Schottky barrier. If it's deep enough, electrons don't pass, unless rectified by applying an electric field – a promising mechanism for turning a graphene-based device on and off.

The group also found, however, another feature of graphene that affects the height of the barrier. Intrinsic ripples form on graphene when it is placed on top of a semiconductor.

The research group, led by Lian Li and Michael Weinert, UWM professors of physics, and Li's graduate student Shivani Rajput, conducted their experiment with the semiconductor silicon carbide. The results were published in the Nov. 21 issue of Nature Communications.

The ripples are analogous to the waviness of a sheet of paper that has been wetted and then dried. Except in this case, notes Weinert, the thickness of the sheet is less than one nanometer (a billionth of a meter).

"Our study says that ripples affect the barrier height and even if there's a small variation in it, the results will be a large change in the electron transport," says Li.

The barrier needs to be the same height across the whole sheet in order to ensure that the current is either on or off, he adds.

"This is a cautionary tale," says Weinert, whose calculations provided the theoretical analysis. "If you're going to use graphene for electronics, you will encounter this phenomenon that you will have to engineer around."

With multiple conditions affecting the barrier, more work is necessary to determine which semiconductors would be best suited to use for engineering a transistor with graphene.

The work also presents opportunity. The ability to control the conditions impacting the barrier will allow conduction in three dimensions, rather than along a simple plane. This 3D conduction will be necessary for scientists to create more complicated nano-devices, says Weinert.

Other contributors on the paper include Mingxing Chen, postdoctoral researcher working with Weinert, Yaoyi Li and Ying Liu, postdoctoral researchers in the Li lab (Liu is now at the Institute for Quantum Computing in Waterloo, Canada.)

Lian Li | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>