Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Solid Electrolyte For Electrochemical Devices

12.03.2015

Researchers from the Faculty of Engineering of Universiti Teknologi MARA (UiTM), Malaysia, have studied the capability of new polymers derived from potato starch as insulators which do not show any remarkable electro activity.

The majority of all polymers are insulators which do not show any remarkable electro activity. In the past, researchers have found out how to obtain a conducting polymer by the introduction of salts, plasticizer and nanofillers.

Uniform dispersion of plasticizer and fillers in salt-polymer matrices creates a class of novel materials exhibiting superior electrical and mechanical properties which are suitable to replace many existing materials such as those for engineering applications and in electrochemical devices.

Novel material which consists of starch is one of the most common renewable and biodegradable polymers deposited as granule in plants which can be found abundantly in our country. It is composed of repeating amylose and amylopectin.

In this research work, potato starch was chosen to be the polymer host because it has a better morphology in comparison to other starch. Physically, it appeared to be soft flexible film with high conductivity compared to corn starch.

Furthermore, instead of just being a popular food item, potato starch is presently applied in the industrial field as coatings and sizing in paper, textiles and carpets as binders and adhesives, absorbents and encapsulates.

The starch based film is reported to exhibit good mechanical properties. In addition, the dry thin film of starch could also be prepared easily. Ammonium salt was chosen because it does not have a high tendency to break the starch. The thin clear films of potato starch were prepared by solution casting technique.

A certain amount of potato starch (Sigma-Aldrich) was weighed and dissolved in 50ml of acetic acid (Systerm) in a 100mL beaker and left to be stirred for 20 minutes at a certain temperature. Once the cloudy solution turns clear and it is cooled to room temperature. The solution is then doped with various amounts of ammonium salts. Later, these dry thin films were characterized via Impedance Spectroscopy, Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM).

Based on the impedance results, the conductivity of starch is low due to no mobile ions provided within the sample. The incorporation of salt increased the conductivity gradually. The higher the concentration of the ammonium salt, it actually attributed to increase in the density number of mobile ions.

The number density of charge carriers’ increased since the rate of ion dissociation has been greater than the rate of ion association. But if the salt concentration is too high, it could increase the influence of the ion pairs and higher ion aggregation, which can reduces the overall mobility and degree of freedom hence decreases the conductivity.

FTIR measurement was used to determine the interactions between salt and the polymer host. In the present work, FTIR spectroscopy was recorded using Spotlight 400 Perkin-Elmer spectrometer in the wavenumber range of 450-4000 cm_1. The FTIR spectra indicates that the complexation between starch and ammonium salt has occurred.

Upon higher concentration of the salt, hydroxyl band shifted to higher wavenumber, this maybe due to the fact that either the excess salt did not dissociate or the ions recombine to form a neutral ion pair which decreases the number of ions. From the x-ray diffractogram, three crystalline peaks are observed thus indicates the pure starch film shows semi crystalline state due to the presence of both sharp and diffuse diffraction peaks.

The fraction of amorphous phase and the charge carriers increase simultaneously with increasing ion concentration. The optimum composition of the green solid electrolyte has the potential to be used as solid electrolyte in electrical devices since it shows maximum conductivity of 10-3 and serve as an ionic conductor.

For further information contact:

UNIVERSITI TEKNOLOGI MARA
SELANGOR
INSTITUTE OF SCIENCE (IOS)
Assoc Prof AZIZAH HANOM AHMAD
azizahanom@salam.uitm.edu.my

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>