Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Solid Electrolyte For Electrochemical Devices

12.03.2015

Researchers from the Faculty of Engineering of Universiti Teknologi MARA (UiTM), Malaysia, have studied the capability of new polymers derived from potato starch as insulators which do not show any remarkable electro activity.

The majority of all polymers are insulators which do not show any remarkable electro activity. In the past, researchers have found out how to obtain a conducting polymer by the introduction of salts, plasticizer and nanofillers.

Uniform dispersion of plasticizer and fillers in salt-polymer matrices creates a class of novel materials exhibiting superior electrical and mechanical properties which are suitable to replace many existing materials such as those for engineering applications and in electrochemical devices.

Novel material which consists of starch is one of the most common renewable and biodegradable polymers deposited as granule in plants which can be found abundantly in our country. It is composed of repeating amylose and amylopectin.

In this research work, potato starch was chosen to be the polymer host because it has a better morphology in comparison to other starch. Physically, it appeared to be soft flexible film with high conductivity compared to corn starch.

Furthermore, instead of just being a popular food item, potato starch is presently applied in the industrial field as coatings and sizing in paper, textiles and carpets as binders and adhesives, absorbents and encapsulates.

The starch based film is reported to exhibit good mechanical properties. In addition, the dry thin film of starch could also be prepared easily. Ammonium salt was chosen because it does not have a high tendency to break the starch. The thin clear films of potato starch were prepared by solution casting technique.

A certain amount of potato starch (Sigma-Aldrich) was weighed and dissolved in 50ml of acetic acid (Systerm) in a 100mL beaker and left to be stirred for 20 minutes at a certain temperature. Once the cloudy solution turns clear and it is cooled to room temperature. The solution is then doped with various amounts of ammonium salts. Later, these dry thin films were characterized via Impedance Spectroscopy, Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM).

Based on the impedance results, the conductivity of starch is low due to no mobile ions provided within the sample. The incorporation of salt increased the conductivity gradually. The higher the concentration of the ammonium salt, it actually attributed to increase in the density number of mobile ions.

The number density of charge carriers’ increased since the rate of ion dissociation has been greater than the rate of ion association. But if the salt concentration is too high, it could increase the influence of the ion pairs and higher ion aggregation, which can reduces the overall mobility and degree of freedom hence decreases the conductivity.

FTIR measurement was used to determine the interactions between salt and the polymer host. In the present work, FTIR spectroscopy was recorded using Spotlight 400 Perkin-Elmer spectrometer in the wavenumber range of 450-4000 cm_1. The FTIR spectra indicates that the complexation between starch and ammonium salt has occurred.

Upon higher concentration of the salt, hydroxyl band shifted to higher wavenumber, this maybe due to the fact that either the excess salt did not dissociate or the ions recombine to form a neutral ion pair which decreases the number of ions. From the x-ray diffractogram, three crystalline peaks are observed thus indicates the pure starch film shows semi crystalline state due to the presence of both sharp and diffuse diffraction peaks.

The fraction of amorphous phase and the charge carriers increase simultaneously with increasing ion concentration. The optimum composition of the green solid electrolyte has the potential to be used as solid electrolyte in electrical devices since it shows maximum conductivity of 10-3 and serve as an ionic conductor.

For further information contact:

UNIVERSITI TEKNOLOGI MARA
SELANGOR
INSTITUTE OF SCIENCE (IOS)
Assoc Prof AZIZAH HANOM AHMAD
azizahanom@salam.uitm.edu.my

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>